
Anatomy of E-commerce Search
A Practical Blueprint for Search Engineers and Architects

Rauf Aliev

Copyright © 2025 Rauf Aliev

All rights reserved.

No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the author,

except for the use of brief quotations in a book review.

ii

Contents

1 Preface 1

2 About This Book 5
2.1 Why This Book? . 5
2.2 Who Is This Book For? . 6
2.3 A Glimpse Inside: What You Will Learn 7

3 Foundations of the Modern Search Stack 11
3.1 Search 101 . 11
3.2 The Engine of E-commerce . 13

3.2.1 The High-Intent Customer 13
3.2.2 Search as a Core Business Function, Not a Utility 14
3.2.3 The Cost of Failure . 15

3.3 The E-commerce Search Landscape 17
3.3.1 The Diverse World of Ecommerce 17
3.3.2 Information vs Product Discovery 20
3.3.3 What Makes E-commerce Search Unique 20
3.3.4 Corpus Nature Unstructured vs Structured 24
3.3.5 Query Nature Vague vs Specific 25
3.3.6 Balancing User and Business Objectives 25

3.4 Further Reading . 27

4 E-commerce Search Market Landscape 29
4.1 The E-commerce Search Architectural Divide 29

4.1.1 Open-Source Control vs. SaaS Agility 29
4.1.2 The SaaS Leadership Landscape 32
4.1.3 Search SaaS Vendor Evaluation Checklist 33

0 Contents

4.2 Platform Ecosystems and Integrated Search Strategies 46
4.2.1 The Open-Source Foundation From Solr Legacy to a Mandated

Core . 47
4.2.2 Strategic Shift: Intelligent Commerce Search 47
4.2.3 Third-Party Ecosystem . 48
4.2.4 The ”Mandated Core” Hybrid Strategy 49

4.3 Core Technologies and Market Trajectories 49
4.3.1 The ”Big Three” Elasticsearch, Apache Solr, and OpenSearch 50
4.3.2 The Trajectory Toward Managed Services (PaaS and SaaS) . 53
4.3.3 Strategic Recommendations and Future Outlook 54

5 Blueprint for the Modern Search Stack 57
5.1 The Search Microservice . 58
5.2 The Data Ecosystem . 60

5.2.1 Basic Relational Models (Attribute-Based) 61
5.2.2 Entity-Attribute-Value (EAV) Models 62
5.2.3 Dedicated Graph Databases 62
5.2.4 Implicit and Hybrid Approaches 63

5.3 The Canonical Search Pipeline . 63
5.3.1 Indexing Pipeline . 65
5.3.2 Retrieval Pipeline . 69
5.3.3 Ranking Pipeline . 71
5.3.4 Retrieval and Ranking are Intertwined 74
5.3.5 The Feedback Loop . 75

5.4 Core Engineering Trade-offs . 77
5.4.1 Data Freshness vs. Indexing Cost 77
5.4.2 Latency vs. Relevance . 78
5.4.3 Precision vs. Recall . 79
5.4.4 Business Objectives vs. User-Perceived Relevance 80
5.4.5 Personalization vs. Privacy and Cold Start 80
5.4.6 System Complexity vs. Maintainability 81
5.4.7 Build vs. Buy . 82

5.5 Further Reading . 83

iv

0 Contents

6 Building and Organizing the Modern Search Team 85
6.1 The Core Roles of the Modern Search Team 85

6.1.1 The Search Product Manager 86
6.1.2 The Search Platform Solution Architect 87
6.1.3 The Relevance Engineer . 88
6.1.4 The Search Backend Engineer(s) 88
6.1.5 The Search Platform Engineer(s) 89
6.1.6 The Data Scientist(s) / ML Engineer(s) 90

6.2 The Merchandiser as a Strategic Partner 90
6.3 Organizational Models . 91

6.3.1 Model 1: The Centralized ”Platform” Team 91
6.3.2 Model 2: The Embedded ”Vertical” Team 91
6.3.3 Model 3: The Hybrid ”Center of Excellence” (Recommended) 92

6.4 Fostering a ”Relevance-First” Culture 92

7 Query and User Intent Understanding 93
7.1 The Query Transformation Pipeline 94

7.1.1 Query Type Identification 95
7.1.2 Language Identification . 97
7.1.3 Foundational Text Processing 98
7.1.4 Text Tagging . 101
7.1.5 Lexical Spell Correction and Fuzzy Search 102
7.1.6 Advanced Spell Correction with RAG 108
7.1.7 Query Expansion and Rewriting 111
7.1.8 Query Relaxation . 114

7.2 Deconstructing User Intent . 115
7.2.1 Query Parsing with Transformer-based Named Entity Recog-

nition (NER) . 116
7.2.2 Hierarchical Query Classification for Taxonomy Alignment . 117
7.2.3 Addressing the Cold-Start Problem 120
7.2.4 Inferring Implicit Intent . 121
7.2.5 The Challenge of Complex and Negative Queries 123
7.2.6 Intent Classification . 125

7.3 Leveraging User Context . 127
7.3.1 Session-Aware Query Interpretation 127

v

0 Contents

7.3.2 Deep Dive: The ”Session Embedding” Model 127
7.3.3 Deep Personalization and the Relevance Flywheel 129

7.4 Advanced Interaction Paradigms . 130
7.4.1 Conversational and Voice Search 130
7.4.2 Multimodal Search . 131
7.4.3 The Need for Structured Data 131

7.5 Scalable Query Understanding Architectures 131
7.5.1 The Modular Query Understanding Service 132
7.5.2 Ensemble and Multi-Task Architectures 133
7.5.3 Case Study: Amazon’s MTL Framework 135
7.5.4 Operationalizing with MLOps 137

8 Advanced Product Understanding 141
8.1 Defining ”Product Intelligence” . 141
8.2 Explicit vs. Implicit Knowledge about Products 142
8.3 Structuring the Catalog for Search 142

8.3.1 PIM as a Single Source of Truth 143
8.3.2 Product Taxonomy . 143

8.4 Navigating the Complexity of Product Variants 148
8.4.1 Data Modeling Patterns for Variants 149
8.4.2 Indexing Strategies for Variants 150
8.4.3 Variants and the Faceting Challenge 151
8.4.4 B2B Search and High-Volume Variants 152
8.4.5 Multidimensional Variants and Configurators 153
8.4.6 Presentation Layer Considerations 154

8.5 Building the Product Knowledge Graph (PKG) 154
8.5.1 PKG and Search . 155
8.5.2 The Engineering Reality of Building a PKG 156
8.5.3 Product Understanding with Large Language Models 160

9 Candidate Retrieval Architectures 163
9.1 Lexical Keyword Retrieval . 164

9.1.1 The Inverted Index Engine 164
9.1.2 Ranking with Okapi BM25 164
9.1.3 Lexical Search Limitations 165

vi

0 Contents

9.1.4 The Reality of Lexical Ranking in SaaS 166
9.2 Semantic Vector Retrieval . 168

9.2.1 The Power of Embeddings 168
9.2.2 The Vector Search Pipeline 169
9.2.3 The Bi-Encoder: Architecture for Retrieval 170
9.2.4 Scaling with ANN Search . 171
9.2.5 The Architectural Anchor: Specialized Vector DB vs. Inte-

grated Engine . 172
9.2.6 Hybrid Lexical-Semantic Search 173

9.3 Behavioral Retrieval Engine . 176
9.3.1 Using Implicit User Signals 176
9.3.2 Graph-Based Collaborative Filtering 176

9.4 Ensemble Retrieval Architecture . 178
9.4.1 Multi-Source Retrieval . 178
9.4.2 Multi-Signal Retrieval . 179
9.4.3 Dynamic Candidate Merging 180
9.4.4 Comparative Retrieval Analysis 181

9.5 Why the Ensemble is a Necessity, Not a Choice 181
9.5.1 The ”Single-Vector Ceiling” 181
9.5.2 The ”Worst-Case” Theoretical Problem 182
9.5.3 How the Ensemble Architecture Solves the Theoretical Limit 183

10 The Ranking Engine 185
10.1 Baseline Heuristic Ranking . 186

10.1.1 Manual Heuristic Tuning . 186
10.1.2 The Business Rules Engine 188
10.1.3 Limitations of Static Rules 189

10.2 The Learning to Rank Paradigm . 190
10.2.1 Supervised Learning for Ranks 190
10.2.2 Feature Engineering for Ranking 191
10.2.3 Real-time vs. Batch . 193
10.2.4 Pointwise, Pairwise, and Listwise LTRs 194

10.3 Implementing Ranking Models . 196
10.3.1 Simple Linear LTR Models 196
10.3.2 The LambdaMART Algorithm 197

vii

0 Contents

10.3.3 Deep Learning for Ranking 199
10.3.4 LLMs as Zero-Shot Rankers 201
10.3.5 Semantic Re-ranking with Cross-Encoders 203

10.4 Balancing User Relevance and Business Objectives 204
10.4.1 Identifying Key Ranking Metrics 204
10.4.2 From Simple Boosting to Multi-Stage Architectures 207
10.4.3 Using Learning to Rank (LTR) to Find the Optimal Balance 210
10.4.4 How to Optimize Business Goals Without Alienating Users . 213
10.4.5 How the Giants Balance Their Equations 215
10.4.6 Why A/B Testing is the Only Ground Truth 218

10.5 Ranking System Architecture and Operations 220
10.5.1 Fallback and Degradation Strategies 220
10.5.2 Pareto Optimization Trade-offs 221
10.5.3 Model Serving and Performance 222

10.6 Evaluating Ranking Performance . 222
10.6.1 Offline Evaluation Metrics 223
10.6.2 Online Testing and Validation 223

11 Search Suggestions 225
11.1 The Strategic Role of Suggestions 227
11.2 A Taxonomy of Modern Search Suggestions 228

11.2.1 Query Suggestions (Keyword-based) 228
11.2.2 Product Suggestions (Entity-based) 229
11.2.3 Category & Brand Suggestions (Navigational) 230
11.2.4 Informational Suggestions (Content-based) 230
11.2.5 Visual Suggestions . 230

11.3 Candidate Generation for Suggestions 231
11.3.1 Foundational Prefix-Based Retrieval 231
11.3.2 Semantic Retrieval for Non-Prefix and Conceptual Suggestions233
11.3.3 Generative Suggestions with LLMs 233

11.4 Ranking and Personalizing Suggestions 235
11.4.1 Low-Latency Learning-to-Rank (LTR) for Suggestions 235
11.4.2 Deep Personalization and Contextualization 238

11.5 Architecting the High-Performance Autocomplete System 239
11.5.1 The Suggestion Service API 239

viii

0 Contents

11.5.2 Handling Client-Side Request Behavior 240
11.5.3 The Multi-Layered Caching Architecture 241
11.5.4 Data Pipelines and Index Freshness 242

11.6 The Evolving Interface: From Dropdown to Dialogue 243
11.6.1 Designing Rich and Visual Suggestion Interfaces 243

12 Facets 247
12.1 The Impact on the User Journey . 248
12.2 Attribute-based vs. Needs-based Faceting 249
12.3 A Taxonomy of Modern Faceted Navigation 250

12.3.1 Deconstructing the Search Results Page 250
12.3.2 Value Selection Paradigms 252

12.4 The Mechanics of Facet Calculation 253
12.4.1 Implementing Hierarchical Facets 254

12.5 Performance and Scalability . 255
12.5.1 The High-Cardinality Problem 255
12.5.2 Facet Count Accuracy . 256
12.5.3 Approximate Facet Counting for Extreme Scale 256
12.5.4 The ”Post-Filter” Pattern for Correct Counts 257

12.6 Handling Technical Edge Cases . 258
12.6.1 Sparse Facets . 258
12.6.2 Handling Missing Values . 259
12.6.3 Multi-Value Facets and Nested Documents 259
12.6.4 Range vs. Discrete Facets . 259

12.7 Ranking and Personalizing Facets 260
12.7.1 The Two-Fold Ranking Problem 260
12.7.2 Baseline Ranking Strategies 261
12.7.3 Thematic and Curated Facets 261
12.7.4 Learning-to-Rank (LTR) for Facet Ordering 262
12.7.5 Deep Personalization and Contextualization 264

12.8 Architecting the High-Performance Facet System 265
12.8.1 Data Pipelines for Facet Generation 268

12.9 From Filters to Dialogue . 270
12.10 A/B Testing and Analytics . 270

12.10.1 A/B Testing Facet Configurations 270

ix

0 Contents

12.10.2 Core Facet Analytics . 271
12.11 Supporting Locales . 272

12.11.1 Handling Multi-Language Facet Values 272
12.11.2 Handling Currencies and Units 273
12.11.3 Regional Product Variations and Assortment 274
12.11.4 Right-to-Left (RTL) Layout Support 275
12.11.5 UI/UX Best Practices for Facet Design 275
12.11.6 Handling Catalog Heterogeneity and Business Logic 279
12.11.7 SEO Best practices for Faceted Navigation 282
12.11.8 Common Pitfalls and Anti-Patterns 284
12.11.9 Generative and Needs-Based Facets 284

13 Recommenders in E-commerce Search 287
13.1 The Search-Recommendation Convergence 288

13.1.1 Search as Contextual Recommendation 288
13.1.2 From Explicit Search to Implicit Discovery 289
13.1.3 Pre-emptive Recommendations 289

13.2 Recommendation Strategies Within Search Context 289
13.2.1 In-Session Recommendations 290
13.2.2 Cross-Session Intelligence . 291
13.2.3 Contextual Injection Points 292

13.3 Modern Recommendation Algorithms for Search 292
13.3.1 Two-Tower Neural Networks for Real-time Matching 293
13.3.2 Transformer-based Sequential Models 294
13.3.3 Graph Neural Networks (GNN) for Product Relations 296
13.3.4 Multi-Armed Bandits for Exploration vs Exploitation 297

13.4 Unifying Search and Recommendations 299
13.4.1 The Unified Scoring Framework 299
13.4.2 Candidate Generation Strategies 300
13.4.3 Feature Sharing and Transfer Learning 301

13.5 Practical Implementation Patterns 302
13.5.1 Architecture Patterns . 302
13.5.2 Real-time vs. Batch Trade-offs 303
13.5.3 Scaling Considerations . 305

x

0 Contents

13.6 Business Logic and Constraints . 306
13.6.1 Inventory-Aware Recommendations 306
13.6.2 Fairness and Diversity . 307
13.6.3 Compliance and Ethics . 308

13.7 Advanced Use Cases . 309
13.7.1 Bundle and Cross-Sell in Search Results 309
13.7.2 B2B-Specific Patterns . 310
13.7.3 Conversational Commerce Integration 311

13.8 Future Directions . 312
13.8.1 Large Language Models as Recommendation Engines 312
13.8.2 Reinforcement Learning for Long-term Optimization 313
13.8.3 Edge AI and On-device Recommendations 314

14 Measurement and Operations 317
14.1 Evaluation Frameworks . 317

14.1.1 Offline Relevance Metrics . 317
14.1.2 Online Business Metrics . 319
14.1.3 Robust A/B Testing for Search 320

14.2 System Architecture and MLOps . 321
14.2.1 Search Microservice Design 321
14.2.2 Real-Time Indexing Pipelines 322
14.2.3 Monitoring and Observability 323

15 Offline Search Evaluation and A/B Testing 327
15.1 The Conceptual Framework of Offline Evaluation 328

15.1.1 Pillar 1: Query Sets (The ”What”) 328
15.1.2 Pillar 2: Evaluation Sets (The ”Ground Truth”) 328
15.1.3 Pillar 3: Search Configurations (The ”Contenders”) 329

15.2 Architecture of an Offline Test Harness 329
15.2.1 Isolation by Design (Sandboxing) 329
15.2.2 The Test Execution Engine (Batch Runs) 330
15.2.3 Analysis and Decision Making (The ”Payoff”) 331

15.3 Scaling Evaluation with AI (The ”Virtual Assessor”) 332
15.3.1 AI-Powered Relevance Scoring 332
15.3.2 AI-Powered Query Generation 333

xi

0 Contents

15.3.3 AI-Powered Analysis (LLM Judgement) 333
15.3.4 Case Study: Off-Policy Evaluation for Simulating SERP Layouts333

15.4 A Concrete Implementation Example: TestMySearch 336

16 Search Analytics 337
16.1 E-commerce Search Analytics . 337

16.1.1 Why Google Analytics and Adobe Analytics Might Not Be
Enough . 338

16.2 The ”Why”: Strategic Importance of Search Analytics 340
16.2.1 Understanding the High-Intent User 340
16.2.2 Driving Data-Driven Decisions 341
16.2.3 Connecting Search to Business Outcomes 341
16.2.4 Identifying Opportunities and Threats 342

16.3 Data Collection . 343
16.3.1 Essential Data Points (Events/Attributes) 343
16.3.2 Technical Considerations . 346

16.4 Data Processing . 347
16.4.1 Key Processing Steps . 347

16.5 Key Metrics and KPIs for Search Analytics 349
16.5.1 Query-Level Metrics . 349
16.5.2 Product-Level Metrics (Originating from Search) 351
16.5.3 Interaction & User Experience (UX) Metrics 352
16.5.4 User Session Recording . 352

16.6 Generating Actionable Reports and Dashboards 354
16.6.1 Common Report Types . 354

16.7 Connecting Analytics to Action and Continuous Improvement . . . 356
16.7.1 Actionable Insights for Different Areas 357
16.7.2 Monitoring and Regression Detection 359

17 User Experience and Future of Search 361
17.1 Engineering the Search UI . 361

17.1.1 Frontend Architectural Foundations 362
17.1.2 Autocomplete System Architecture 365
17.1.3 Engineering Faceted Navigation 368
17.1.4 SERP Information Architecture 371

xii

0 Contents

17.1.5 Subscribing to Search Results (Search Alerts) 373
17.2 Dialogue-Driven Conversational Search 376

17.2.1 The RAG Architecture . 376
17.2.2 The Conversational Orchestrator 378
17.2.3 Key RAG Pipeline Components 380
17.2.4 Streaming for Conversational UX 381

17.3 The Future Generative UI and Agents 383
17.3.1 AI-Powered Generative UI 383
17.3.2 Agentic and Autonomous Commerce 386
17.3.3 The Personalized Shopping Agent Vision 388

17.4 Search Bar UI Requirements (Template) 389
17.4.1 Initial Visibility and Placement 389
17.4.2 Hover State . 392
17.4.3 Activation State (On-Focus) 392
17.4.4 Query Input and Autocomplete 394
17.4.5 Navigating Suggestions . 399
17.4.6 Activating the Search . 400

17.5 Further Reading . 401

18 The Agentic E-commerce Engine 403
18.1 From Search to Autonomy . 403
18.2 RAG vs. Agentic AI . 403

18.2.1 The Rise of ”Agentic RAG”: RAG as an Agent’s Tool 404
18.3 The Agentic Commerce Paradigm: A New Strategic Landscape . . . 405

18.3.1 AI as the Primary Customer 405
18.3.2 The Economic Opportunity 406
18.3.3 Disintermediation and the ”Background Utility” 406
18.3.4 ”Agentic SEO” and Exploitable Biases 407

18.4 AI Agents in Production — From Research to Reality 408
18.4.1 Amazon Rufus: The Conversational Marketplace 408
18.4.2 Alibaba’s B2B Agent Ecosystem (Accio & Marco) 408
18.4.3 Shopify’s Democratized AI (Sidekick & App Ecosystem) . . 409
18.4.4 Instacart’s Cart Assistant: Bridging Digital and Physical . . 409

18.5 Academic Foundations and Core Agent Architectures 410
18.5.1 Synergizing Reasoning and Acting — ReAct Framework . . . 410

xiii

0 Contents

18.5.2 Benchmarking the Agent: WebShop and ShoppingBench . . 411
18.5.3 Multi-Agent Systems: Specialized Task Decomposition . . . 412
18.5.4 Specialized vs. General Models 412

18.6 Technical Architecture of a Modern Shopping Agent 413
18.6.1 Retrieval-Augmented Generation (RAG) as a Core Tool . . . 413
18.6.2 Function Calling and Tool Use: Enabling Action 413
18.6.3 Multi-modal Understanding: Visual Product Search 414
18.6.4 Agent Orchestration Frameworks: Managing Complexity . . 414

18.7 Core Challenges and the Future of Agentic Commerce 415
18.7.1 The ”Agentic Trilemma” — Cost, Latency, and Accuracy . . 415
18.7.2 The New Attack Surface . 415
18.7.3 Governed Autonomy and Human-in-the-Loop (HITL) 416
18.7.4 A New Protocol Stack . 417

19 Architectural Blueprints for Challenging Verticals 419
19.1 Fashion, Apparel, and Beauty . 419

19.1.1 Index and Data Modeling . 420
19.1.2 Query Processing — Solving the Vocabulary Gap 423
19.1.3 The ”Search What I See” Pipeline 424
19.1.4 Ranking and Personalization 426
19.1.5 Key UX Integrations . 426

19.2 Grocery and Consumables . 427
19.2.1 Redefining Success Metrics 428
19.2.2 Index and Data Modeling . 429
19.2.3 Query Processing . 432
19.2.4 Ranking Strategy: Replenishment is King 434
19.2.5 Key UX Integrations . 435

19.3 Consumer Electronics . 436
19.3.1 Index and Data Modeling . 437
19.3.2 Decoding Technical Intent 439
19.3.3 Ranking Strategy . 441
19.3.4 Key UX Integrations . 442

19.4 Automotive Parts . 443
19.4.1 Index and Data Modeling . 444
19.4.2 Query Processing . 446

xiv

0 Contents

19.4.3 Ranking Strategy: Fitment is Binary 447
19.4.4 Key UX Integrations . 448

19.5 Home Goods and Furniture . 449
19.5.1 Index and Data Modeling . 450
19.5.2 Query Processing . 453
19.5.3 Ranking Strategy: Context and Convenience 454
19.5.4 Key UX Integrations . 456

19.6 Industrial & Scientific Supplies (MRO & B2B) 457
19.6.1 Index and Data Modeling . 458
19.6.2 Query Processing . 459
19.6.3 Ranking Strategy: Precision and Logistics 461
19.6.4 Key UX Integrations . 462

19.7 Digital Goods & Media (Software, Stock Photos, Ebooks) 463
19.7.1 Index and Data Modeling . 464
19.7.2 Query Processing . 465
19.7.3 Ranking Strategy: Popularity and Similarity 467
19.7.4 Key UX Integrations . 468

19.8 Multi-Vendor Marketplaces . 469
19.8.1 Index and Data Modeling . 470
19.8.2 Query Processing . 472
19.8.3 Ranking Strategy . 473
19.8.4 Key UX Integrations . 474

20 Securing the Search Platform 477
20.1 The E-commerce Search Attack Surface 477
20.2 Threat Modeling for E-commerce Search 478

20.2.1 Applying the STRIDE Framework 478
20.2.2 Introduction to LINDDUN for Privacy Threats 479

20.3 Scraping, Bots, and Business Logic Abuse 480
20.3.1 Defining the Threat: Scraping Scenarios 480
20.3.2 The Multi-Layered Defensive Architecture (Defense-in-Depth) 480

20.4 Search Query Injection and Parameter Tampering 483
20.4.1 Attack Scenarios . 483
20.4.2 Defensive Measures: Parameterization and Deny-Lists 485

xv

20.5 ”Denial of Wallet” and Resource Exhaustion 485
20.5.1 From DoS to EDoS . 485
20.5.2 The LLM Attack Vector — Unbounded Consumption 486
20.5.3 Granular API Rate Limiting 486
20.5.4 Request Cost Analysis and Throttling 487
20.5.5 Budgeting and Alerting . 487

20.6 Information Leakage and PII Handling 488
20.6.1 PII in Search Queries and Logs 488
20.6.2 Exploiting Feedback Loops and Deanonymization 488
20.6.3 Privacy-Preserving Data Handling 489

21 Recommended Reading 491
21.1 Foundational Information Retrieval (IR) Theory 491
21.2 User Experience (UX) and Interface Design 492
21.3 Modern Relevance Engineering Practice 493
21.4 Mentioned and recommended Papers, Blogs, Books 493

22 Conclusion 503

xvi

1 Preface

My journey into the world of search began twenty-five years ago, long before the
sophisticated SaaS search platforms of today were commonplace. My first challenge
was to build a search module for a Windows CD-ROM application—a custom built
(also by my team) collection of legal documents and commentary (it was called
”Navigator CD”). I was coding in Delphi, and with no off-the-shelf solutions readily
available, I decided to build the search module myself.

In retrospect, I was grappling with the fundamental problems of information retrieval.
With limited computing power and a substantial amount of content, naive, brute-
force approaches were non-starters. In trying to find a better way, I independently
developed my own versions of an inverted index and skip lists, unaware that they
had already existed and been used for years. Looking back on that first project, I
recognize that I probably did almost everything wrong that could be done wrong.
And yet, it worked. The search was surprisingly fast.

A few years later, in 2000, I found myself working as the programmer and archi-
tect—the ”webmaster,” as it was then called—for an e-commerce company named
”Portable Systems.” (portsys.ru) We were selling consumer electronics, and our simple
PHP-based shop, with its few hundred products, needed a search function. We
quickly discovered that the same naive approaches that failed on the CD-ROM were
just as inadequate for the web, unable to provide either the performance or the
quality we needed.

Since then, I have worked on nearly a dozen e-commerce platforms of varying scales.
I’ve engineered search for massive retailers with tens of thousands of products and
nationwide pickup points processing thousands of orders daily. I’ve also built it for
my own small online store (nadiske.ru) where I sold custom-made data/content CDs,

1 Preface

powered by a surprisingly resilient design from that first custom project years earlier.
Across these projects, we’ve used a wide spectrum of technologies, from Sphinx to
Apache Solr.

In recent years, as companies increasingly adopt powerful SaaS solutions from
providers like Coveo, Algolia, and Constructor.io, I’ve observed a recurring pattern.
A business will begin with a solution that is easy and fast to implement. Inevitably,
they encounter a ceiling where their evolving business requirements cannot be met.
They are then forced to look for a new path, whether it’s migrating to a more
powerful SaaS platform or bringing a self-hosted solution like OpenSearch into their
own cluster.

I’ve noticed that this decision-making process is fraught with difficulty, even for
experienced development teams. Articulating the precise technical requirements
and, just as importantly, the acceptable limitations of a new system is a formidable
challenge. To my surprise, many teams don’t even know that their search can be
measured and enhanced. For them, the search engine was just a black box. Yet,
every product, whether it’s a SaaS platform or a self-hosted engine, comes with its
own set of constraints but basically all of them are based on the same ideas and
concepts.

The field of Information Retrieval, especially when compared to a domain like
recommendation algorithms, appears to rest on a remarkably small set of foundational
pillars. At the lowest level of a search stack, retrieval is almost invariably powered
by one of two core data structures: the traditional inverted index, which has been
the bedrock of search for decades, or the more recent vector index, which enables
semantic and similarity-based search.

While academically interesting alternatives have been proposed, such as Microsoft’s
probabilistic BitFunnel algorithm, they have largely remained niche innovations. This
is not to say Lucene is the only foundational library for inverted indices, though it is
by far the most dominant. Other mature, high-performance libraries, often written in
C++, have also been used in production for years, most notably Xapian and Sphinx.
More recently, a modern, Lucene-inspired alternative, Tantivy, has emerged from the
Rust ecosystem and serves as the core for distributed search engines like Quickwit.
Despite these powerful alternatives, the industry has overwhelmingly consolidated

2

1 Preface

around the two primary approaches: the inverted index (most often via the Lucene
ecosystem) and the vector index.

It is also worth noting the close relationship between search and recommender
systems. The two domains are deeply intertwined, often sharing data, signals, and
modeling techniques. However, to maintain a clear focus, this book is dedicated
exclusively to the challenges of search and retrieval. For readers interested in the
complementary discipline of recommendations, I invite you to explore my book,
Recommender Systems in 2026: A Practitioner’s Guide, which offers a deep dive
into that specific domain.

This book is my attempt to gather the best practices and architectural patterns for
designing and implementing search systems into a single, comprehensive guide. It is
born from a desire to structure my own experience and present it in a way that is
clear and actionable for other engineers. Much of this material was refined over the
years through presentations and workshops for my teams, clients, and colleagues. In
a way, the book almost wrote itself.

I am confident that every engineer, whether new to search or a seasoned veteran,
will find something of value within these pages.

Rauf Aliev

3

2 About This Book

2.1 Why This Book?

The landscape of literature for search professionals can be overwhelming, spanning
dense academic textbooks, practical user experience guides, and rapidly evolving
machine learning papers. While invaluable, these resources often exist in silos.
Academic texts provide deep theory but lack practical implementation details for
specific domains. UX guides focus on the interface but may not connect design
patterns to the underlying backend mechanics. Modern AI and relevance engineering
books offer cutting-edge techniques but may assume significant prior knowledge or
lack a holistic architectural perspective.

And, of course, most of them are not focused on e-commerce.

”Anatomy of E-commerce Search” aims to fill a critical gap by uniquely synthesizing
these disparate knowledge domains into a single, cohesive narrative specifically
tailored for the high-stakes world of e-commerce.

This book offers a holistic, end-to-end architectural view. It moves beyond optimizing
individual components (like the ranking algorithm) to present a blueprint for the entire
search ecosystem—from understanding the business context and market landscape to
designing modular microservices , implementing real-time data pipelines, managing
MLOps , establishing robust evaluation frameworks, and considering the future of
conversational and agentic commerce.

It provides a deep, e-commerce-specific focus. While general search books like
Relevant Search by Doug Turnbull and John Berryman, and AI-Powered Search by
Trey Grainger and Doug Turnbull are excellent resources, this book maintains a laser

2 About This Book
2.2 Who Is This Book For?

focus on the unique challenges and opportunities of the e-commerce domain—handling
structured product data, balancing relevance with business objectives, the criticality
of facets and suggestions, and the specific application of AI for product and query
understanding in a commercial context.

In essence, this book aims to be the comprehensive ”soup-to-nuts” guide that I
wished I had throughout my own career building these systems—a single resource
that bridges theory, practice, architecture, and user experience for the modern
e-commerce search engineer.

2.2 Who Is This Book For?

This book is primarily written for the engineers, architects, and technical leads
responsible for designing, building, and operating e-commerce platforms where search
is a big and important component.

Whether you are embarking on building a new search microservice from scratch,
migrating from a legacy system, integrating a third-party SaaS solution, or looking to
optimize an existing implementation, this book provides the architectural patterns,
algorithmic knowledge, and operational disciplines you need.

It will also be valuable for:

• Product Managers seeking to understand the technical possibilities and
trade-offs involved in search features to better collaborate with engineering
teams and define product strategy.

• Data Scientists and Machine Learning Engineers looking to apply mod-
ern AI techniques like Learning to Rank, vector search, and LLMs specifically
within the e-commerce search domain.

• Technical Leaders and CTOs needing a comprehensive overview of the
state-of-the-art in search technology to make informed strategic decisions about
technology adoption and team structure.

6

2 About This Book
2.3 A Glimpse Inside: What You Will Learn

While the book delves into technical details, the focus is on practical application
and architectural understanding. It assumes a baseline familiarity with software
engineering principles, web technologies, and basic concepts of information retrieval
and machine learning, but aims to be accessible to anyone tasked with building or
managing these critical systems.

2.3 A Glimpse Inside: What You Will Learn

This book is structured to guide you through the entire lifecycle of designing, building,
and operating a modern e-commerce search platform, mirroring the canonical search
pipeline and extending into crucial operational and forward-looking topics.

Foundations — We establish the strategic importance of search, survey the market
landscape of technologies (open-source vs. SaaS), and lay out the high-level architec-
tural blueprint of a modern search stack, including the core microservice design and
the essential data ecosystem.

Query and User Intent Understanding — We dive into the critical first stage of
processing user input, covering techniques from basic text normalization and parsing
to advanced spell correction, query expansion, intent classification, and leveraging
user context for session-aware interpretation.

Advanced Product Understanding — We explore the challenge of teaching the
system to understand products beyond simple attributes, contrasting the explicit
knowledge modeling approach of Product Knowledge Graphs (PKGs) with the
emerging, powerful paradigm of leveraging LLMs grounded in catalog data.

The Search Pipeline - Retrieval, Ranking, Suggestions, Facets & Recommenders —
This core section details the implementation of the main search components.

• Candidate Retrieval. We examine architectures for high-recall retrieval,
focusing on the state-of-the-art hybrid ensemble approach combining lexical
(BM25), semantic (vector search), and behavioral signals.

7

2 About This Book
2.3 A Glimpse Inside: What You Will Learn

• The Ranking Engine. We cover the evolution from heuristic ranking to
modern Learning to Rank (LTR) models (like LambdaMART and deep learning
architectures), with a crucial focus on multi-objective optimization to balance
relevance and business goals.

• Search Suggestions (Autocomplete). We dissect the architecture of high-
performance suggestion systems, from foundational data structures (Tries,
N-grams) to candidate generation (semantic, generative) and low-latency LTR
for personalized ranking.

• Faceted Navigation. We explore the mechanics of facet calculation, perfor-
mance optimization, ranking and personalization strategies, and UI/UX best
practices.

• Recommenders in E-commerce Search. We explore the convergence
of search and recommendations, algorithms for contextual suggestions, and
strategies for unifying these two critical systems.

Measurement, Operations & Analytics — We dedicate three chapters to operational
disciplines. Measurement and Operations covers the core MLOps and system
architecture patterns for indexing and monitoring. Offline Search Evaluation
and A/B Testing provides a deep-dive framework for building a test harness, and
Search Analytics focuses on the key metrics and dashboards required to connect
search activity to business outcomes.

User Experience and the Future of Search — We connect backend technology to
the User Experience, discussing UI best practices and the rise of dialogue-driven
conversational search (RAG). We then dedicate a full chapter to the future, The
Agentic E-commerce Engine, exploring the transition from RAG to autonomous
AI agents, their technical architectures, and the strategic implications for commerce.

Advanced Architectural Topics

This final section transitions from foundational patterns to the specific, high-stakes
challenges of real-world deployment. We provide pragmatic, battle-tested solutions
for the complex problems that emerge at scale, focusing on two critical areas: vertical-
specific design and platform security.

8

2 About This Book
2.3 A Glimpse Inside: What You Will Learn

First, we present Architectural Blueprints for Challenging Verticals. A one-
size-fits-all search architecture does not exist. We dedicate a full chapter to dissecting
the unique search ”DNA” of distinct e-commerce domains, including Fashion &
Apparel, Grocery, Automotive Parts, B2B/Industrial Supplies, Consumer Electronics,
and Multi-Vendor Marketplaces. For each vertical, we provide tailored blueprints
for data modeling, query processing, ranking strategies, and UX integrations that
address their specific challenges—from ”fitment” in auto parts to ”replenishment” in
grocery and ”product-listing duality” in marketplaces.

Finally, we address a topic that is too often an afterthought: Securing the Search
Platform. As a customer-facing, data-intensive API, your search platform is a prime
target. This chapter provides a critical guide to hardening your system, starting
with formal threat modeling (using frameworks like STRIDE and LINDDUN). We
then detail defensive architectures against the most common and costly attacks,
including sophisticated price scraping, query injection, parameter tampering, and
the modern ”Denial of Wallet” (EDoS) attacks that target resource-intensive AI and
LLM features.

Throughout the book, architectural patterns are illustrated with real-world examples
and case studies from leading e-commerce companies, providing concrete validation
for the principles discussed.

9

3 Foundations of the Modern Search
Stack

3.1 Search 101

Before we can architect a search stack, we must first agree on what a search engine is.
At its core, a search engine solves one of the most fundamental problems in computer
science: finding a small, relevant set of items (the ”needles”) from within a massive,
complex collection of information (the ”haystack”). The user provides a query—an
expression of their intent—and the engine must return an ordered list of the most
relevant documents, and it must do so almost instantaneously.

This requirement for sub-second speed means that simply scanning every document
for the query terms, a ”brute-force” approach, is an impossibility. The solution,
which has been the bedrock of information retrieval for decades, is to do the hard
work upfront. This is achieved with a data structure known as the inverted index.
Instead of storing documents and scanning them, the engine builds a giant map,
much like the index at the back of a textbook. This map lists every unique term
(or ”token”) in the corpus and points to a ”posting list” of all the documents that
contain it. A search for ”brown leather boots” is thus transformed from a slow scan
of millions of product descriptions into a high-speed lookup of the lists for ”brown,”
”leather,” and ”boots,” and a near-instant calculation of which documents appear in
all three and have the highest relevance score.

This powerful idea is the heart of Apache Lucene, the open-source, high-performance
Java library that is the de facto engine for most of the world’s search applications.
Lucene itself is a library, not a complete server. To make it usable, scalable, and
fault-tolerant, companies rely on the full-featured search engines built on top of it.

3 Foundations of the Modern Search Stack
3.2 The Engine of E-commerce

The two most dominant in the open-source world are Apache Solr and Elastic-
search (along with OpenSearch, a popular fork of Elasticsearch). These platforms
wrap Lucene in a distributed system, providing the REST APIs, management tools,
and advanced features like faceting and monitoring required for a production-grade
system.

For decades, the inverted index was the undisputed king, excelling at lexical match-
ing—finding the exact words. But what about semantic matching, or understanding
the intent behind the words? A user might type ”couch” but be perfectly happy
with results for ”sofa.” This is where the second great pillar of modern retrieval has
emerged: the vector index. Using deep learning models, queries and documents are
converted into numerical representations—called embeddings—in a high-dimensional
space. Search becomes a geometric problem of finding the ”closest” document vectors
to the query vector. Most state-of-the-art systems today use a hybrid approach,
blending the precision of the inverted index with the conceptual reach of vector
search.

While academically interesting alternatives have been proposed, such as Microsoft’s
probabilistic BitFunnel algorithm, they have largely remained niche innovations. The
industry has overwhelmingly consolidated around these two powerful, index-based
approaches. This evolution has also blurred the line between search and recommender
systems. When a user searches for ”gifts for dad,” are they performing a search
or asking for a recommendation? When the search results are personalized based
on their past purchase history, is that search or recommendation? The reality is
that the two domains are deeply intertwined, often sharing the same data signals
and modeling techniques. In many modern platforms, the search engine and the
recommendation engine are two sides of the same coin, working together to solve the
core problem of product discovery.

Understanding this technical foundation—the inverted index for lexical match, the
vector index for semantic match, and the servers that host them—is essential for
any engineer. But in the world of e-commerce, this technology is not an abstract
information retrieval tool. It is the single most critical touchpoint for a high-intent
customer. It is the primary engine of an e-commerce business.

12

3 Foundations of the Modern Search Stack
3.2 The Engine of E-commerce
3.2.1 The High-Intent Customer

3.2 The Engine of E-commerce

Before jumping into the technical architecture, it’s crucial to understand the strategic
importance of search. For an engineer, this context isn’t peripheral; it is the driving
force behind every design decision, algorithmic choice, and performance optimization.

The search function isn’t just another feature or a passive utility. It is the primary
engine of an e-commerce business. It’s the digital counter where user intent is most
clearly expressed and where the greatest potential for revenue is concentrated. This
chapter uses data-backed arguments to reframe the search system as a mission-critical
business function. It will show that technical excellence in this domain translates
directly—and massively—to the company’s bottom line.

3.2.1 The High-Intent Customer

On any e-commerce site, not all visitors are created equal—especially in their
immediate value to the business. A critical distinction exists between the ”passive
browser” and the ”active searcher.” The search user is a distinct and uniquely valuable
customer segment; their behavior signals a high intent to purchase. By quantifying
their economic impact, the high stakes of delivering a world-class search experience
become crystal clear.

Industry data consistently shows that while users who engage with the search bar
are a minority of total site visitors (often between 15% and 30%), they generate a
disproportionately large share of revenue—frequently accounting for 44% to 45% of
a site’s total income1. This dramatic disparity underscores a fundamental principle:
the act of searching is a powerful declaration of intent. Unlike a visitor who
browses categories, a user who types ”men’s waterproof trail running shoes size 11”
has moved beyond passive discovery and into an active, high-intent ”I-want-to-buy”
moment.

1Search Behavior Drives 44% of Ecommerce Revenue, Constructor Study Reveals, March
6, 2025, https://talk-commerce.com/blog/needs-links-search-behavior-drives-44-of-ecommerce-
revenue-constructor-study-reveals/

13

3 Foundations of the Modern Search Stack
3.2 The Engine of E-commerce

3.2.2 Search as a Core Business Function, Not a Utility

This high intent translates directly into superior conversion metrics. Search users are
significantly more likely to make a purchase, with conversion rates that are typically
2 to 3 times higher than those of non-searching visitors2. On major platforms
with highly optimized search, this lift can be even more pronounced; Amazon, for
example, sees its conversion rate increase sixfold when a visitor performs a search3.
Furthermore, these high-intent users tend to spend more, with data showing their
average spending is 2.6 times greater than that of their browsing counterparts,
directly boosting key metrics like Average Order Value (AOV).

3.2.2 Search as a Core Business Function, Not a Utility

The most effective way to conceptualize the role of an e-commerce search engine is to
see it as an expert digital sales associate. Its core function is to guide a customer from
a vaguely expressed need to a successful purchase with minimal friction, mirroring
the consultative process of a skilled human employee. This analogy is not merely
illustrative; it provides a powerful framework for understanding the system’s required
capabilities and its position within the business. A sophisticated search platform
embodies the responsibilities of multiple business departments, making it a core
business function rather than a simple technical utility.

Deconstructing this analogy reveals how search functionalities map directly to the
roles of a human e-commerce specialist or associate:

Merchandising — Just as a human merchandiser strategically arranges products in a
physical store to maximize visibility and sales, the search system’s ranking algorithm
makes critical merchandising decisions. By boosting certain products—based on
profit margin, seasonality, or promotional status—the search engine curates the
digital shelf in real-time for every user.

Sales — The system directly facilitates transactions by removing friction and con-
necting users to products they are likely to buy. When it correctly interprets a query

240+ stats on e-commerce search and KPIs, Algolia Blog,
https://www.algolia.com/blog/ecommerce/e-commerce-search-and-kpis-statistics

313 On-Site Search Conversion Rate Statistics For eCommerce Stores, Opensend, 2025,
https://www.opensend.com/post/on-site-search-conversion-rate-statistics-ecommerce

14

3 Foundations of the Modern Search Stack
3.2 The Engine of E-commerce

3.2.3 The Cost of Failure

like ”what to wear for a winter run” and returns a relevant set of thermal leggings,
base layers, and windproof jackets, it is performing a sales consultation.

Customer Service — By handling symptom-based queries such as ”remedies for
sunburn,” the search system acts as a first-line customer service agent, solving a
user’s problem by recommending relevant products like aloe vera gel or after-sun
lotion.

Data Analysis — A modern search system is a learning system. It continuously
analyzes user behavior—clicks, add-to-carts, and purchases—to optimize its own
performance. This mirrors the work of a data analyst scrutinizing sales figures to
inform future business strategy.

This perspective has profound organizational implications. The search engineering
team cannot operate in a technical silo. Their work is the digital implementation of
core retail business functions. To be effective, engineers must develop a deep under-
standing of business goals, product margins, inventory constraints, and marketing
campaigns. The most successful e-commerce companies structure their search teams
not as a platform utility that serves internal clients, but as a product-focused team
with direct ownership of and accountability for business KPIs like conversion rate
and Revenue Per Visitor (RPV). This elevates the role of the search engineer from a
simple implementer to a strategic partner in driving business growth.

3.2.3 The Cost of Failure

To complete the argument for search’s critical importance, it is necessary to examine
the tangible, negative consequences of a poor search experience. Excellence in this
domain is not the norm; industry benchmarks reveal that a staggering percentage of
e-commerce sites—as high as 72%—fail to meet fundamental user expectations for
search functionality.4 This widespread mediocrity means that a high-quality search
experience is not just a feature, but a significant competitive advantage.

The link between a frustrating search and customer churn is direct and unforgiving.
Research indicates that 12% of users will abandon a site and navigate to a competi-

4See Algolia’s, , earlier in this chapter

15

3 Foundations of the Modern Search Stack
3.3 The E-commerce Search Landscape

tor after just one unsatisfactory search experience.5 This lost revenue is directly
measurable through key user frustration metrics. A high ”zero results” rate, where a
user’s query returns no products, is a clear signal of failure in query understanding
or catalog coverage. Similarly, a high ”search exit rate”—the percentage of users
who leave the site directly from the search results page—is a strong indicator that
the returned products were irrelevant or unhelpful. These are not just UX metrics;
they are direct proxies for lost sales.

Studies confirm the severity of this issue: a staggering 85% of site searches may
not return what the user sought6, and 22% of searches return absolutely no results.
Ultimately, 80% of visitors will abandon a site if the search experience is poor.

Beyond general abandonment, there is the ”silent killer” known as search abandon-
ment7. This occurs when customers leave the site, often within seconds of landing,
because they fail to find the products they are looking for. This massive problem
affects up to 68% of online shoppers and results in lost sales that are often mistakenly
categorized with generic website bounce rates, as the abandonment occurs long
before any cart tracking can begin. E-commerce businesses are reportedly losing at
least $2 trillion dollars each year from this failure in product discovery. Furthermore,
if shoppers fail to find the primary product, they miss opportunities to discover
complementary products that could increase the average order value (AOV).

Performance is a critical dimension of the user experience with direct financial
consequences. The modern online shopper expects instantaneous results. Data shows
that every 1-second delay in loading search results can reduce conversions by as much
as 7%.8 This transforms system latency from a purely technical concern into a first-
class business metric. For the search engineer, this means that the efficiency of an
algorithm is just as important as its accuracy. A system that cannot deliver relevant
results within a few hundred milliseconds has failed, regardless of the sophistication
of its underlying models.

5See Opensend’s, earlier in this chapter
6The ABCs of E-Commerce Search: A Guide to Essential E-Commerce Search Features, https://ww
w.easyask.com/wp-content/uploads/2014/09/ABCs-of-eCommerce-Search-White-Paper.pdf

7The Silent Killer of Ecommerce Sales: Search Abandonment, Athos Commerce Team, https:
//athoscommerce.com/blog/the-silent-killer-of-ecommerce-sales-search-abandonment/

8See Opensend’s, earlier in this chapter

16

3 Foundations of the Modern Search Stack
3.3 The E-commerce Search Landscape
3.3.1 The Diverse World of Ecommerce

3.3 The E-commerce Search Landscape

Having established the strategic importance of search, it is now essential to define the
problem domain for the engineer. A common pitfall is to assume that e-commerce
search is simply a smaller, scoped version of general web search. This assumption
is fundamentally flawed. The goals, data characteristics, success metrics, and core
challenges of e-commerce search are profoundly different from those of web search.
Understanding these distinctions is the first step toward designing an effective
architecture, as it clarifies why solutions from the web search domain cannot be
simply ”lifted and shifted” and why a specialized set of techniques is required.

3.3.1 The Diverse World of Ecommerce

Before we draw our first major distinction against web search, it is crucial to appreciate
the diversity of what ”eCommerce”9 encompasses. The term often conjures a specific
image: an online retailer selling physical goods like books, electronics, or apparel.
While this model—the digital equivalent of a department store—is a primary focus
of this book, the reality of e-commerce is far broader.

Basically, E-commerce is any commercial transaction conducted electronically. This
definition includes a vast array of business models, operational structures, and
product types, each of which relies heavily on search and presents its own unique
challenges.

We can first classify these models by the parties involved in the transaction:

• Business-to-Customer (B2C). This is the most common model, representing
the ”digital department store” where a business sells goods or services directly
to individual consumers.

• Business-to-Business (B2B). Here, companies sell products or services to
other business entities. The search challenges are distinct, often involving

9or e-commerce. We’ll use both spellings in the book

17

3 Foundations of the Modern Search Stack
3.3 The E-commerce Search Landscape
3.3.1 The Diverse World of Ecommerce

massive, highly technical catalogs, client-specific pricing, entitlements, and
searches for bulk-order-friendly items.

• Customer-to-Customer (C2C). This model facilitates sales between indi-
viduals. The search system must handle a massive, unstructured, and rapidly
changing inventory of user-generated content, such as a person selling their
used car or collectibles.

• Customer-to-Business (C2B). In this model, individuals offer their products
or services to businesses. This is common on platforms for freelancers, where a
company searches for a content writer or designer.

• Public Sector Models (B2G, G2C). Even government and public-sector in-
teractions are a form of e-commerce. This includes Business-to-Government
(B2G) platforms, where businesses search for and bid on government tenders,
and Government-to-Citizen (G2C) portals, where citizens search for official
services or job openings.

Beyond the transactional relationship, the operational structure of the business
fundamentally changes the search problem:

• Storefront vs. E-Marketplace. A Storefront is typically a single retailer
selling its own products. An E-Marketplace aggregates products from many
different third-party sellers, creating an enormous and diverse catalog. This
introduces complex search challenges in content quality control, seller-ranking
fairness, and managing a much larger inventory. The search challenges in
marketplaces are usually much more broader because the sellers compete with
each other and use all the weaknesses of the marketplace search to push their
products forward.

• Pure Click vs. Brick-and-Click. A ”Pure Click” company operates
exclusively online. A ”Brick-and-Click” (or omnichannel) retailer has both a
physical and digital presence. This model creates critical search requirements,
such as finding products ”in-stock near me” and integrating local store inventory
with the central warehouse.

18

3 Foundations of the Modern Search Stack
3.3 The E-commerce Search Landscape
3.3.2 Information vs Product Discovery

• Dropshipping. In this model, the retailer does not hold its own inventory
but passes orders to a third-party manufacturer or wholesaler who ships the
product. From a search perspective, this means inventory and availability data
is federated and must be synchronized, making real-time accuracy a significant
challenge.

Finally, the type of product being sold defines the data and the user’s intent.

• Physical Goods. The classic model of selling apparel, electronics, groceries,
or furniture.

• Digital Goods & Subscriptions. This includes platforms selling soft-
ware, video games, e-books, and online courses. It also covers Member-
ship/Subscription services, where the ”product” is recurring access to content
or a service, like a streaming platform.

• Service Marketplaces. Think of platforms for freelance work, travel planning,
or food delivery. Here, the ”product” is a service, a restaurant, a gig, or a
person’s time.

• Ticketing & Reservations. Systems for booking airline tickets, train travel,
hotel rooms, and concert or event tickets are massive e-commerce operations.
While their primary search is often highly structured (e.g., origin, destination,
date), full-text search remains critical for discovery. Users may search for
”hotels near Red Square,” ”non-stop flights to Tokyo,” or ”business class on
Acela,” all of which require sophisticated text retrieval and ranking capabilities.

A system selling digital software licenses has different search requirements than one
selling fresh groceries, and both differ from an airline’s booking engine. Despite this
diversity, they all share a common goal: guiding a user with commercial intent from
a query to a transaction. The foundational principles of indexing, retrieval, and
ranking discussed in this book apply to all these domains, even if the specific signals
and data (e.g., ”inventory” means ”available seats” for an airline or ”available time
slots” for a freelancer) must be adapted.

19

3 Foundations of the Modern Search Stack
3.3 The E-commerce Search Landscape

3.3.3 What Makes E-commerce Search Unique

3.3.2 Information vs Product Discovery

The most fundamental difference between web search and e-commerce search lies in
the user’s ultimate goal and, consequently, the system’s primary purpose.

The primary objective of a general web search engine like Google is information
discovery. The user has a question, and the system’s goal is to find and rank
documents from a vast, unstructured corpus of web pages that best answer that
question. Success is measured by the user’s satisfaction with the informational
content they find, often proxied by metrics like click-through rate and dwell time.

In contrast, the primary objective of an e-commerce search engine is to facilitate
product discovery. The user has a commercial intent, and the system’s goal is to
replicate and enhance the in-store shopping experience, guiding the user from that
intent to a successful purchase. Success is not measured by informational satisfaction
but by hard commercial KPIs: sales conversion rate, average order value, and revenue
per visitor.

This distinction is critical because it fundamentally changes the definition of ”rel-
evance.” In web search, relevance is primarily about the topical or informational
match between a query and a document. In e-commerce, relevance is a complex,
multi-faceted concept. It includes not only the textual match between the query
and product description but also a host of other factors such as product quality (via
reviews), availability, price, brand, visual appeal, and the user’s personal preferences.
The engineering challenge is to build a system that can model and optimize for this
much richer definition of relevance.

3.3.3 What Makes E-commerce Search Unique

E-commerce queries exhibit fundamentally different characteristics from web search
queries. They tend to be shorter (average 2-3 words vs 3-4 for web search), more
ambiguous, and heavily skewed toward product-type queries rather than informational
ones.

20

This is a demonstration PDF.
The full book is available for purchase:

https://testmysearch.com/my-books.html

4 E-commerce Search Market Landscape

The author of this book faces quite a challenging task: to discuss the market of
embedded search engines while trying not to mention specific brands or products.
Everything changes so quickly that by the time the book is published, the information
might already be outdated. Some companies may release revolutionary products,
while others may disappear from the market altogether. However, general concepts
and classifications are likely to evolve more slowly. Let’s focus on those.

4.1 The E-commerce Search Architectural Divide

4.1.1 Open-Source Control vs. SaaS Agility

At a foundational level, businesses implementing an advanced search solution face an
architectural choice between two distinct models: deploying a self-hosted open-source
engine or subscribing to a managed Software-as-a-Service (SaaS) platform. This
decision has profound implications for cost, control, and required technical expertise,
shaping an organization’s operational model, talent acquisition strategy, and total
cost of ownership (TCO). When a business relies on an e-commerce platform, vendor
recommendations play a major role. If the platform already integrates a search
engine, companies building their e-commerce solutions on top of it are far more likely
to use the built-in option rather than develop their own.

The central trade-off involves control versus convenience. Apache Solr or Elasticsearch,
for example, provides users with full access to the source code and offers unlimited
customization, enabling definition of unique search behaviors and complex query
logic. However, this high degree of freedom necessitates significant manual effort; for

4 E-commerce Search Market Landscape
4.1 The E-commerce Search Architectural Divide

4.1.1 Open-Source Control vs. SaaS Agility

example, achieving capabilities like comparable speed to such Search-as-a-Service
(Algolia, Coveo etc.) may require months of extensive development and unremitting
tuning in Elasticsearch. Conversely, Search SaaS solutions provide essential features
like instant search and typo tolerance out-of-the-box, sacrificing some customization
flexibility for ease of implementation and speed.

The requirement for expertise is another defining trade-off. Elasticsearch or Apache
Solr requires specialized DevOps resources and often ”more manual setup, tuning,
and maintenance”. In fact, the open-source option is widely considered complex and
labor-intensive. In contrast, according to its advocates, Search-as-a-Service provides
a superior developer experience, allowing teams to achieve live implementation in less
than a week, maximizing agility and time-to-market with pre-packaged libraries and
robust API clients. However, they may create a false impression of customizability
and low time-to-market.

4.1.1.1 The Self-Hosted Open-Source Model

Freely available search engine software, most notably Elasticsearch and Apache
Solr, which are both built on the Apache Lucene library, represents the open-source
path. The primary advantage of this approach is unparalleled control and flexibility.
Organizations can customize every aspect of the search algorithm, indexing process,
and infrastructure to meet highly specific needs. This model is most often adopted by
large enterprises with mature engineering departments or by technology companies
that view the search engine as a core component of their own products and a key
competitive differentiator requiring bespoke algorithmic tuning1.

Open-source software is free from licensing costs but introduces substantial infras-
tructure and operational expenses. Open-source platform costs increase due to
self-hosting expenses, hardware, maintenance, and the need for specialized developer
time. Query-based pricing can escalate significantly for high-traffic applications,
self-hosted Elasticsearch implementations for large scale (10 million records and high
query volume) are typically 60–80% more cost-effective than Search-as-a-Service,
even accounting for infrastructure overhead. For small to medium workloads (under

1See my recent book on the topic, ”Inside Apache Solr and Lucene”

30

4 E-commerce Search Market Landscape
4.1 The E-commerce Search Architectural Divide

4.1.1 Open-Source Control vs. SaaS Agility

1 million records), Search-as-a-Service may be more cost-effective when factoring in
the cost of management.

Thus, this power comes at the cost of significant engineering overhead. Businesses
are responsible for the initial setup, configuration, ongoing maintenance, security,
and scaling of the search cluster. This necessitates a dedicated team of specialized
engineers with deep expertise in the chosen technology stack, from Lucene internals
to distributed systems management. The organization bears the full operational
burden of provisioning, monitoring, and ensuring 24/7 availability of the search
infrastructure.

4.1.1.2 The Managed Software-as-a-Service (SaaS) Model

The SaaS model abstracts away the complexity of managing search infrastructure.
Businesses pay a subscription fee to a vendor that handles all aspects of performance,
scalability, security, and maintenance. The key benefits of this model are rapid time-
to-market, lower upfront costs, and access to dedicated support and user-friendly
interfaces for non-technical users like merchandisers. This allows the business to
focus its resources on strategic activities such as merchandising and optimizing the
customer experience, rather than on infrastructure management.

The trade-off is a reduction in granular control over the core search infrastructure
and algorithms. The business is inherently reliant on the vendor’s product roadmap,
innovation cycle, and specific approach to relevance and personalization. However,
the market is evolving to address this limitation. New paradigms, such as ”Open
SaaS” or ”Composable Commerce,” are gaining traction. This philosophy uses
extensive APIs to provide much of the flexibility of open-source systems within a
fully managed environment. This hybrid approach seeks to offer the best of both
worlds: the agility and low overhead of SaaS combined with the extensibility and
control previously associated only with open-source solutions.

Beyond abstracting infrastructure, SaaS vendors provide a suite of tools to accel-
erate development and improve results. Many offer UI toolkits or SDKs (Software
Development Kits) for rapidly building a feature-rich search interface. Furthermore,
SaaS platforms almost always include a robust analytics API for collecting user

31

4 E-commerce Search Market Landscape
4.1 The E-commerce Search Architectural Divide
4.1.3 Search SaaS Vendor Evaluation Checklist

interactions (clicks, add-to-carts, purchases). This collected data is a crucial asset,
as the vendor uses it to power machine-learning models for recommendations and
relevance tuning. While technically distinct from core search, these features—like
boosting items that users frequently click on for similar queries—directly enhance
the search experience and are a key part of the SaaS value proposition.

4.1.2 The SaaS Leadership Landscape

The e-commerce search and product discovery market is a highly competitive space
populated by both established technology giants and innovative, specialized vendors.
Authoritative industry analyses from leading analyst firms provide a clear view of
the current leaders, establishing a consensus on the key players shaping the SaaS
market.

The consistent appearance of certain vendors in top-tier analyst reports establishes
them as the key players shaping the SaaS market. Their solutions, alongside the
foundational open-source technologies of Elasticsearch and Solr, form the core of the
modern e-commerce search ecosystem.

The significant overlap in the ”Leaders” category between reports from two inde-
pendent and highly respected analyst firms, each employing its own rigorous and
distinct evaluation methodology, is a powerful market signal. This convergence
indicates that the market for enterprise-grade SaaS search has reached a state of
maturity. A clear cohort of vendors has successfully combined a compelling product
vision with a demonstrated ability to execute, achieving a critical mass of AI-driven
features, proven customer success, and the scalability required by large enterprises.
For enterprises evaluating solutions, this simplifies the initial creation of a vendor
longlist but intensifies the need for deep due diligence on this elite group to identify
the optimal fit. This due diligence process should move beyond marketing claims
and focus on specific, technical capabilities related to performance, control, and
transparency.

32

4 E-commerce Search Market Landscape
4.1 The E-commerce Search Architectural Divide
4.1.3 Search SaaS Vendor Evaluation Checklist

4.1.3 Search SaaS Vendor Evaluation Checklist

The following checklist provides a strong starting point for any engineering team
evaluating a SaaS search provider. A Customer represents the engineering team here,
A vendor represents the company providing Search SaaS, and a User is who uses the
search, the end user.

4.1.3.1 SLAs and Performance

Service Level Agreements (SLAs) define the vendor’s commitments to uptime, latency,
and reliability, directly impacting user experience and business operations. Evaluating
these ensures the solution meets production demands without unexpected downtime
or delays.

Performance metrics, such as latency percentiles (p95, p99), are critical for real-
time applications like e-commerce search, where even minor delays can lead to cart
abandonment. Vendors should provide verifiable benchmarks and tools for ongoing
monitoring.

SaaS providers often approach clients with a “trust me, everything will be fine”
attitude, offering little in the way of firm guarantees or penalties in case of serious
or prolonged outages. In many cases, customers have no reliable way to verify
whether an outage actually occurred or whether reports on social media about
service unavailability were simply the result of user-side issues.

• (Indexing SLA). Does the solution provide a Service Level Agreement (SLA)
for indexing? Can the vendor guarantee that a product update sent to the
API will be searchable within a specified time (e.g., ”p99 of 5 seconds”)?

• (Model Training SLA). What is the guaranteed frequency for retraining
AI/ML models (e.g., product recommendations, query suggestions, personaliza-
tion)? How long does it take for new user interaction data (clicks, add-to-carts,
purchases) to be incorporated and reflected in the live models? Is there a firm
SLA for this data propagation and training cycle (e.g., ”models will be updated
no less than every 4 hours”)?

33

4 E-commerce Search Market Landscape
4.1 The E-commerce Search Architectural Divide
4.1.3 Search SaaS Vendor Evaluation Checklist

• (Historical Availability & Transparency). Does the vendor provide visi-
bility into historical service uptime and incidents? Customers should be able
to verify whether outages occurred in the past (e.g., within the last 24 hours
or month) and distinguish between vendor-side and client-side issues. It is
also important to know whether such information is available at the global
service level (covering all customers) and/or specific to the client’s own account.
Access to historical reliability data demonstrates transparency and helps assess
operational maturity.

• (Search/Suggest SLA). What are the SLAs for the search and autocomplete
API endpoints (e.g., p95, p99 latency)? How are these measured, and what
real-time monitoring (e.g., a status dashboard) does the vendor provide for us
to verify this?

• (Rate Limiting & Burst Handling). What are the API rate limits for both
indexing and search? Are they separate? How are sudden ”bursts” (e.g., a
10-second flash sale) handled? Are we hard-throttled (429 errors) or is there a
burst-handling mechanism? How are overages handled (throttling vs. cost)?

• (Complex Query Performance). What is the performance impact of
applying many (e.g., 10+) complex filters (e.g., (color=red OR color=blue)
AND price ¡ 50) to a query? Does the vendor have SLAs for heavily filtered or
faceted search requests?

• (Support Response SLA). What are the guaranteed response times (Time
to Acknowledge) and resolution times (Time to Resolution) for incidents of
varying severity levels (e.g., P0 - System Down, P1 - Severe Degradation, P2 -
General Question)? Is 24/7/365 support for critical issues included, and what
is the escalation process? What is the communication channel?

• (Service Credits / Penalties). What happens if the vendor breaches the
stated SLAs for uptime, indexing, or latency? Are there financial compensations
(service credits) available, and what is the mechanism for calculating and
claiming them? (An SLA without a penalty is just a marketing promise).

34

4 E-commerce Search Market Landscape
4.1 The E-commerce Search Architectural Divide
4.1.3 Search SaaS Vendor Evaluation Checklist

• (SLA Definition & ”Brown-outs”). Does the uptime SLA only cover
500-errors? How are ”brown-outs” (e.g., p99 latency degrading to 10 seconds,
or serving stale data) measured and do they count as downtime for service
credit purposes?

• (Configuration Propagation SLA). How quickly are changes made via the
admin dashboard (e.g., new merchandising rules, synonyms, boosts) guaranteed
to take effect in production? Is this propagation instantaneous, or is there a
caching and distribution delay?

• (Disaster Recovery RPO/RTO SLA). Beyond standard node failover, what
are the vendor’s commitments in the event of a total regional failure? What
are the Recovery Point Objective (RPO—e.g., ”no more than 5 minutes of
data loss”) and Recovery Time Objective (RTO—e.g., ”full service restoration
in another region within 1 hour”) targets? Are regular backups involved?

• (Backup and Restore Policy). What is the vendor’s data backup policy?
How frequently are backups taken for all customer data (including the index,
configurations, and analytics data), and what is the data retention period?
Is it possible for a customer to request a Point-in-Time Recovery (PITR) to
restore their index or configuration to a specific state (e.g., to recover from a
major accidental data corruption on the client-side)?

• (Analytics Data Availability SLA). With what latency (p99) are analyt-
ics events (clicks, searches, add-to-carts) guaranteed to appear in analytics
dashboards or be available in the raw data stream?

Robust SLAs and performance guarantees minimize risks in high-stakes environments,
allowing teams to focus on innovation rather than firefighting issues.

4.1.3.2 Scalability and Architecture

Scalability ensures the system grows with traffic and data volume without perfor-
mance degradation. Architecture choices, like auto-scaling and distributed systems,
determine how well the vendor handles real-world variability.

35

4 E-commerce Search Market Landscape
4.1 The E-commerce Search Architectural Divide
4.1.3 Search SaaS Vendor Evaluation Checklist

Key considerations include handling concurrency and spikes, as e-commerce often
sees unpredictable loads from promotions or viral events.

• (Traffic Spikes). How does the vendor’s architecture handle sudden, massive
traffic spikes (e.g., a ”Shark Tank” effect or Black Friday)? Is scaling automatic,
and what is the ramp-up time for new capacity?

• (Batch Indexing). What is the recommended method for a full re-index of
the catalog (e.g., 10 million records)? Does the vendor support high-throughput
batch APIs, or it is required to send individual record updates?

• (Indexing Concurrency). How does the vendor handle high-velocity, concur-
rent partial updates (e.g., 1,000s of inventory/price changes per second) while
a full re-index is also in progress? Does one block the other?

• (Priority) Is it possible to index some items sooner when the indexer is busy
with the load of regular indexing events?

• (Failover Mechanisms). What automatic failover processes are in place for
node failures, and what is the recovery time objective (RTO)?

• (Tenancy Model). What is the tenancy model (e.g., multi-tenant, single-
tenant, or hybrid)? If multi-tenant, what measures are in place to prevent the
”noisy neighbor” problem, where another customer’s high load (either search
or indexing) could impact our performance and SLAs?

• (Independent Workload Scaling). Can indexing capacity (write operations)
and search capacity (read operations) be scaled independently? For example,
if we need to perform a massive re-index, can we temporarily scale up only
the indexing resources without affecting the cost and performance of our live
search traffic?

• (Catalog/Data Scalability). How does the architecture scale as the number
of documents (e.g., from 1 million to 100 million products) or the total index
size (e.g., from 10GB to 1TB) grows? Is there a performance degradation in

36

4 E-commerce Search Market Landscape
4.1 The E-commerce Search Architectural Divide
4.1.3 Search SaaS Vendor Evaluation Checklist

query or indexing speed as the index size increases, and how do you mitigate
this?

• (ML Model Scalability). How does the ML/AI architecture scale as the
volume of interaction data (e.g., from 1 million to 1 billion daily events) and
the dimensionality of the problem (e.g., 50 million unique users and 100 million
products) grow? Is there a performance degradation in model training time
(how long it takes to build a new model) or inference latency (the p99 time to
get a personalized/AI-driven result)? How do you mitigate this to ensure that
AI-powered features like real-time personalization or vector search remain fast
at massive scale?

• (Sharding and Replication Strategy). What is the strategy for data
partitioning (sharding) and redundancy (replication)? Does the customer have
control over (or visibility into) the number of shards and replicas? How does
the sharding strategy impact query aggregation performance (e.g., faceting)
across a large, distributed index?

• (Planned Capacity Scaling). Beyond automatic scaling for sudden spikes,
how does the platform handle planned high-traffic events? Can we pre-provision
and ”warm up” capacity ahead of a major marketing campaign or holiday to
ensure zero ramp-up time and test the scaled capacity?

• (Transactional Indexing). If an indexing batch of 1,000 records fails on
record #900, does the entire batch roll back (atomic transaction), or are the
first 899 records committed, leaving the index in an inconsistent state?

• (High-Cardinality Facet Limits). What is the performance impact (p99
latency) of faceting on an attribute with millions of unique values (e.g., a
B2B part number)? Is there a hard limit on the number of distinct values an
attribute can have to be facetable?

• (Record vs. Variant Billing). If our pricing is ”per record,” how is a
product with 50 variants (e.g., 10 sizes x 5 colors) counted? Does this count as
1 record or 50 records against our quota?

37

4 E-commerce Search Market Landscape
4.1 The E-commerce Search Architectural Divide
4.1.3 Search SaaS Vendor Evaluation Checklist

• (B2B/Entitlements Architecture). How does the architecture handle
complex B2B entitlements (e.g., User A sees ”Catalog A” with ”Price A”)?
Can these user-specific filters be applied at scale without degrading query
latency?

4.1.3.3 Limits

Limits define operational boundaries, distinguishing between fixed constraints and
flexible ones that can scale with needs. Understanding these prevents surprises
in production, as many technical constraints are directly tied to pricing tiers and
architectural choices.

Hard limits are non-negotiable technical caps, while soft limits offer room for adjust-
ment, often through request or plan upgrades.

• (Hard and Soft Limits). What specific limits (e.g., records, operations,
attributes) are hard (architectural constraints) and which are soft (configurable
per plan)? For soft limits, which ones can be increased on request, and do they
typically incur additional costs?

• (Overage Policy). If we exceed a soft or contractual limit (e.g., monthly search
operations or record count), is the service throttled/stopped (hard-stop), or
do we automatically move to a higher (and more expensive) tier/pay-as-you-go
overage?

• (Storage and Record Limits). What are the caps on the total index size
(in GB/TB) and the total document count? More importantly, what is the
maximum allowed size for a single document/record (in KB/MB)?

• (Attribute and Index Limits). Is there a maximum number of attributes
(fields) allowed per record? Is there a limit on the number of attributes that
can be configured as searchable or faceted within a single index? Is there a cap
on the total number of indices allowed per account?

38

This is a demonstration PDF.
The full book is available for purchase:

https://testmysearch.com/my-books.html

5 Blueprint for the Modern Search Stack

With a clear understanding of the strategic importance and unique challenges of
e-commerce search, it is time to lay out the high-level architectural blueprint. A
high-performing search function is not merely a feature; it is a critical revenue driver,
a primary mechanism for product discovery, and a key determinant of customer
satisfaction. A poorly architected system, in contrast, leads to lost sales, user
frustration, and a competitive disadvantage.

In this chapter, I provide a conceptual map of a modern search stack, deconstructing
it into its primary logical components and explaining how they fit together. This
framework is essential for contextualizing the detailed algorithmic and implementation
discussions that will follow in subsequent parts of the book. We will explore the
prevailing architectural patterns, the data ecosystem that fuels the system, and the
fundamental engineering trade-offs that govern its design.

We will move from the ”what” to the ”how,” exploring the specific patterns and
algorithms that bring a high-performance search system to life.

• Architecting the Search Service: Common architectural patterns for
building a robust and scalable search microservice, looking at the primary
functional blocks required to manage the search lifecycle.

• Data Modeling for the Index: Strategies for effectively modeling com-
plex product relationships—such as base-variant hierarchies, accessories, and
component parts—within the search index to ensure correct retrieval.

• The Canonical Search Pipeline: Canonical multi-stage pipeline, dissecting
the specific responsibilities and logic of each distinct phase, from query reception
to final response.

5 Blueprint for the Modern Search Stack
5.1 The Search Microservice

• Optimizing the Indexing Process: Techniques for accelerating the in-
dexing pipeline, focusing on the design of more optimal data fetching and
transformation workflows to ensure data freshness and reduce system load.

• Modern Ranking Mechanisms: How the final, precise ranking of results is
achieved, discussing the various mechanisms and models used, from traditional
scoring to advanced machine-learned systems.

• Navigating Engineering Tradeoffs: The most critical engineering tradeoffs
inherent in search design—such as the constant tension between relevance and
latency—and the typical architectural patterns and solutions used to resolve
them.

5.1 The Search Microservice

In modern, large-scale e-commerce platforms, the preferred architectural pattern
is to encapsulate all search-related functionality within one or more dedicated,
independently scalable, and deployable Search microservices. This approach
provides numerous advantages over a traditional monolithic architecture, where
search is a tightly coupled and often brittle module.

The primary benefits of this ”headless” search architecture are autonomy and
specialization. It allows a dedicated search team to iterate and deploy new relevance
models and features rapidly, without risking the stability of the entire platform.
This team can also choose a technology stack—from programming languages like
Python for machine learning to specialized databases—that is specifically optimized
for the unique demands of information retrieval, natural language processing, and
machine learning, rather than being constrained by the choices made for the broader
e-commerce platform.

The Search microservice exposes a well-defined API contract that serves as its
interface to the rest of the platform, which typically communicates with it via an
API Gateway. The core endpoints of this contract usually include:

58

5 Blueprint for the Modern Search Stack
5.1 The Search Microservice

• A /search endpoint that is the workhorse of the system. It accepts a query, user
context (like user id, session id, device type), and a rich set of parameters
for filtering, faceting, sorting, and pagination. It returns a ranked list of
product IDs, along with metadata for faceting and pagination.

• An /autocomplete (or /autosuggest) endpoint that takes a partial query
string and returns a structured list of suggested queries, products, categories,
and even popular brands to accelerate the user’s search journey.

• A /facets endpoint to retrieve the available filter options (e.g., brand, color,
size) for a given query or category page. In many implementations, this
functionality is bundled into the response of the main /search endpoint to
reduce the number of network calls.

Figure 5.1: Typical Ecom-Search Integration

Internally, this service is a system within a system, acting as an orchestrator for
complex logic. To function, it must interact with several other core microservices to
gather the necessary data in real-time. Key dependencies include:

• Product Catalog Service. The source of truth for all product information.
The quality and structure of this data are foundational to search success.

• Inventory Service. Provides real-time stock levels, a critical signal for ranking
(e.g., demoting or removing out-of-stock items) and filtering.

59

5 Blueprint for the Modern Search Stack
5.2 The Data Ecosystem

• Pricing Service. Delivers up-to-date pricing, including any user-specific
discounts or promotions, which can be a factor in ranking.

• User Profile Service. The source for user history, preferences, and cohort
information, essential for any form of personalization.

• Order Management Service. Provides purchase and return data, which
closes the feedback loop for machine-learned ranking models by providing the
ultimate ”ground truth” for relevance.

This decoupled, service-oriented design grants the search team the autonomy to
build, maintain, and evolve a highly specialized and performant system that can
become a true competitive differentiator.

5.2 The Data Ecosystem

An intelligent search system is, at its core, a data-driven application. Its performance
is entirely dependent on the quality, freshness, and richness of the data it consumes.
This data comes from multiple sources and forms a complex ”data ecosystem”—a
connected set of tools and platforms that captures information across the entire
customer journey. The primary components of this ecosystem are:

• The Product Catalog. This is the foundational dataset, the corpus against
which all searches are performed. It contains both structured attributes
(price, brand, color) and unstructured text (title, description). The accuracy
and richness of this catalog data, often managed in a Product Information
Management (PIM) system, are paramount. Incomplete or inaccurate product
data is one of the most common and difficult-to-fix causes of poor search
relevance.

• The Behavioral Data Stream. This is the dynamic, real-time stream of user
interaction events—the ”voice of the customer.” It includes clicks, add-to-carts,
purchases, query reformulations, zero-result searches, and session dwell time.
This data is the primary source of implicit feedback on search quality and serves
as the raw material for training machine-learned ranking models, powering

60

5 Blueprint for the Modern Search Stack
5.2 The Data Ecosystem

5.2.1 Basic Relational Models (Attribute-Based)

personalization, and generating behavioral signals like product popularity.
Processing this high-velocity data often requires a hybrid architecture, such as
a Lambda or Kappa architecture, which combines a real-time ”speed layer” for
immediate updates (e.g., updating popularity scores) with a ”batch layer” for
more comprehensive, offline model training.

• The Knowledge Graph. This is the semantic layer that provides the system
with ”world knowledge,” enabling it to understand concepts beyond simple
keyword matching. A knowledge graph is a structured representation of entities
(like products, brands, attributes, and categories) and the relationships between
them (e.g., ”Nike” is a brand of ”running shoes”; ”down jacket” is for ”winter
weather”). By encoding these relationships, the knowledge graph allows the
search system to perform sophisticated query expansion and understand user
intent more deeply, leading to more intelligent and relevant results. For example,
it can understand that a search for ”beach reading” should include paperback
novels and sunglasses. While a full-fledged knowledge graph can be complex,
many systems start with a simpler ”flat” version, such as a synonym dictionary
or a product-to-category mapping.

In many cases, the knowledge graph is implemented via simple database relationships.
These implementations exist on a spectrum of complexity and flexibility, from basic
relational links to dedicated graph databases.

5.2.1 Basic Relational Models (Attribute-Based)

The most basic and common implementation is not a distinct ”graph” at all, but
rather the inherent graph-like structure of a well-designed relational database. In
this model, explicit relationships are defined by foreign keys:

• A products table has a brand id column that links to a brands table.

• A product categories mapping table links a product id to a category id.

This approach is fast, reliable, and already maintained by the Product Information
Management (PIM) system. Its primary limitation is rigidity. Modeling a new,

61

5 Blueprint for the Modern Search Stack
5.2 The Data Ecosystem

5.2.3 Dedicated Graph Databases

complex relationship (like is compatible with for accessories) often requires schema
changes, which are slow and difficult to manage at scale.

5.2.2 Entity-Attribute-Value (EAV) Models

To overcome the rigidity of the relational model, many platforms adopt an Entity-
Attribute-Value (EAV) model. This is a ”long” or ”narrow” data structure that
trades columns for rows to gain flexibility. Instead of a products table with columns
for brand, color, and size, an EAV system would have a single table with three
columns:

• Entity. The product ID (e.g., P123).

• Attribute. The name of the attribute (e.g., ”Color,” ”Brand,” or even ”Occa-
sion”).

• Value. The value for that attribute (e.g., ”Blue,” ”Nike,” ”Beach Vacation”).

This model allows for new attributes and relationships to be added simply by
inserting new rows, with no schema changes required. This flexibility is ideal for
sparse, diverse, and rapidly changing product attributes. However, it can be inefficient
to query (requiring complex ”self-joins” or ”pivots”) and is less effective at modeling
relationships between two entities (e.g., product-to-product) rather than an entity
and its value.

5.2.3 Dedicated Graph Databases

The most powerful and explicit implementation uses a dedicated graph database
(e.g., Neo4j, JanusGraph). This approach directly stores data as nodes (entities like
products, brands) and edges (relationships like is compatible with or is brand -
of) .

This model is purpose-built to solve the complex, multi-step relational queries that
are difficult for other systems. For example, a query like ”Find cases for phones that
are compatible with this charger” is a straightforward graph traversal.

62

5 Blueprint for the Modern Search Stack
5.3 The Canonical Search Pipeline

While powerful, this approach carries significant engineering overhead. It requires
new infrastructure and expertise, populating this graph—the ”information extraction
bottleneck”—is a massive and complex challenge.

It is important to note that this type of implementation is extremely rare in e-
commerce systems. When graph databases are used for this purpose, they typically
serve as an experimental layer on top of more traditional implementations, such as
those mentioned above.

5.2.4 Implicit and Hybrid Approaches

Given the engineering cost of explicit knowledge graphs, modern architectures often
use hybrid or implicit methods:

1. Automated PKG Construction: This involves using machine learning to
automatically build and maintain the graph, as seen in systems like Amazon’s
AutoKnow.

2. LLM-Based Knowledge: This approach bypasses building an explicit graph
entirely. Instead, it leverages the vast ”world knowledge” already embedded
within an LLM and ”grounds” it in the specific product catalog. Of course,
such LLM can be fine-tuned for the domain knowledge of the specific business
or company.

5.3 The Canonical Search Pipeline

The internal data flow within the Search microservice can be modeled as a canonical,
multi-stage pipeline. This framework provides a logical separation of concerns and
represents the standard structure for modern search systems. The four key stages
are:

1. Indexing: This is the offline process of collecting, transforming, and storing
product data in an efficient, searchable data structure—typically an inverted

63

5 Blueprint for the Modern Search Stack
5.3 The Canonical Search Pipeline

index. The transformation step is critical and involves processes like tok-
enization (breaking text into words), normalization (lowercasing), stem-
ming/lemmatization (reducing words to their root form), and applying
synonym expansions. This process must handle both a full, periodic offline
build, where the entire index is recreated from scratch, and an instant index-
ing stream, which processes real-time updates (e.g., price or stock changes) to
maintain data freshness.

2. Retrieval: This is the first online stage, executed in real-time when a user
submits a query. Its responsibility is to efficiently search the index and find
a broad set of potentially relevant candidate products from the millions of
items in the catalog. Retrieval can be done using various techniques, from
classic keyword-based inverted index lookups to modern vector-based searches
using Approximate Nearest Neighbor (ANN) algorithms. The primary goal
of the retrieval stage is to maximize recall—ensuring no potentially relevant
products are missed—while maintaining extremely low latency.

3. Ranking: This is the second online stage, where the real intelligence of the sys-
tem is applied. It takes the hundreds or thousands of candidate products from
the retrieval stage and uses a more computationally expensive and sophisticated
model to sort them. The primary goal of the ranking stage is to maximize
precision at the top of the results list. This is where modern Learning to
Rank (LTR) models are used to weigh hundreds of signals—textual relevance,
behavioral data (popularity), product attributes, and business objectives (e.g.,
boosting high-margin items)—to produce the final, optimal ordering.

4. Feedback: This is the crucial loop that closes the system and allows it to
learn and improve over time. It involves capturing user interactions (clicks,
purchases) with the ranked results and feeding this behavioral data back into
the data ecosystem. This feedback is the most valuable signal for continuously
training and improving the machine-learned ranking models, creating a virtuous
cycle where the system gets smarter with every user interaction.

It is critically important that the indexing and search processes are fully separated.
It is important that all optional components can be disabled ”on the fly” via a feature
switcher mechanism. It is also important that everything that can be configuration-

64

5 Blueprint for the Modern Search Stack
5.3 The Canonical Search Pipeline

5.3.1 Indexing Pipeline

driven is implemented that way, and that this configuration can be used in A/B
testing.

5.3.1 Indexing Pipeline

The indexing stage, as introduced in the canonical pipeline, is a foundational offline
process. It is best understood as a classic Extract, Transform, and Load (ETL)
pipeline. Its purpose is to fetch raw product data from various backend systems,
reshape it into a searchable format, and load it into the search engine’s index. The
quality and efficiency of this ETL process directly determine the accuracy, freshness,
and relevance of the entire search system.

5.3.1.1 Extract Phase

The ”Extract” phase is often the first major bottleneck. In a typical e-commerce
setup, product data is not stored in a single, flat table. Instead, it is scattered across
multiple databases and services: a Product Information Management (PIM) system
for core attributes, a separate service for prices, another for real-time inventory, and
perhaps others for user reviews or media.

A naive implementation often falls into the ”N+1 query problem”: the pipeline
retrieves a list of 10,000 products and then, for each product, makes separate
database calls to fetch its price, its inventory level, and its category. This results in
tens of thousands of database queries, which is extremely slow and inefficient.

A common optimization is to move from this iterative approach to a batch-oriented
one. Instead of querying per product, the pipeline can first fetch all 10,000 product
records. Then, it can make a single query to the pricing service (e.g., get prices -
for skus=[...]) and one query to the inventory service. These related datasets
are then loaded into memory (e.g., into a hash map or dictionary). The pipeline
can then iterate through the products and perform a fast in-memory join to enrich
each product document. This dramatically reduces database load but comes with a
trade-off: it requires significantly more application memory. Engineers must balance
this to ensure the indexing process doesn’t create new memory-related problems.

65

5 Blueprint for the Modern Search Stack
5.3 The Canonical Search Pipeline

5.3.1 Indexing Pipeline

5.3.1.2 Transform Phase

The ”Transform” phase is where the raw data is enriched and made searchable.
This includes the standard text analysis processes mentioned earlier (tokenization,
stemming, synonym expansion). However, modern pipelines also perform more
resource-intensive transformations. For example, a pipeline might use an LLM to
generate a concise ”key features” summary or extract a list of relevant keywords
from a long, unstructured description.

These advanced transformations can be slow (and expensive) and are prime candidates
for parallelization and caching. A robust pipeline will not block the main indexing
flow for these operations. Instead, it might push the ”generate summary” task onto
a separate job queue. Multiple worker processes can then consume from this queue
in parallel, asynchronously processing the LLM requests and updating the product
documents later, without halting the primary flow of indexing critical data like price
and stock.

And, of course, there is no need to perform the same slow/expensive transformation
for the same set of data. Instead, the system should use the persistent cache.

5.3.1.3 Load Phase

The ”Load” phase is the final step of the ETL pipeline, responsible for taking the
fully transformed and enriched product documents and sending them to the search
engine. While this sounds like a simple data transfer, its design is critical for system
performance, efficiency, and reliability.

The most important optimization in this phase is batching. Instead of sending one
document at a time, which would create massive network overhead and overwhelm
the search engine, the pipeline collects documents into batches (e.g., 500 or 1,000
documents) and sends them in a single request. Modern search engines like Elastic-
search and OpenSearch are highly optimized for this, with bulk APIs designed to
ingest large amounts of data far more efficiently than single-document requests.

66

This is a demonstration PDF.
The full book is available for purchase:

https://testmysearch.com/my-books.html

6 Building and Organizing the Modern
Search Team

In the preceding chapter, we laid out the technical blueprint for a modern search
stack—a sophisticated, multi-stage system of microservices, data pipelines, and
machine learning models. However, this architecture does not exist in a vacuum.
A system of this complexity is a product, not a utility, and it requires a dedicated,
specialized product team to build, operate, and continuously improve it.

Many e-commerce organizations make the critical mistake of treating search as a
static feature, a ”black box” maintained by a generalist backend team. This approach
inevitably leads to relevance decay, technical debt, and millions in lost revenue.

This chapter details the organizational blueprint for the modern search team. We
will explore the essential roles, the critical non-technical stakeholders, and the team
structures that enable a company to move from simply having a search bar to wielding
a world-class, revenue-driving search platform.

6.1 The Core Roles of the Modern Search Team

A high-performing search team is a cross-functional unit that blends product vision,
relevance engineering, machine learning, and platform operations. While the exact
titles may vary, the following four roles are essential.

A critical question for any organization is whether these roles must be dedicated,
full-time positions or if they can be combined—either with each other or with
broader, existing roles. For a small organization, these functions are almost always

6 Building and Organizing the Modern Search Team
6.1 The Core Roles of the Modern Search Team

6.1.1 The Search Product Manager

combined. The general E-commerce Product Manager also serves as the de facto
Search Product Manager, and a single backend engineer often acts as both the
Relevance and Platform Engineer.

This combined model is a necessary starting point, but it carries a significant strategic
cost. When search is merely one of five responsibilities for a Product Manager, its
development is often deprioritized, and it is treated as a static ”feature” to be
maintained rather than a dynamic product to be optimized. Similarly, when an
engineer is responsible for both platform uptime (a reactive, operational task) and
relevance tuning (a proactive, experimental task), the urgent demands of operations
will almost always consume the time intended for the important work of improving
relevance.

The decision to dedicate even one person, such as a Search Product Manager, is the
single most important organizational shift a company can make. It signals a move
from treating search as a utility to treating it as a core, revenue-driving product.
The roles defined in this chapter—the PM, Relevance Engineer, Search Platform
Engineer(s), Search Backend Engineer(s), and ML Engineer(s) —represent these
functions in their ideal, specialized state. The degree to which your organization
combines or separates them is a direct measure of your scale and strategic commitment
to search as a core business function.

In contrast, at very large companies, a single role often expands into an entire
team, with specialized functions and built-in redundancies to effectively manage risks
associated with staffing and ensure smooth operations.

6.1.1 The Search Product Manager

The Search Product Manager (PM) is the single most critical role. This person is
the CEO of the search experience, acting as the bridge between business goals and
technical execution.

The responsibilities of Search Product Manager include:

86

6 Building and Organizing the Modern Search Team
6.1 The Core Roles of the Modern Search Team

6.1.2 The Search Platform Solution Architect

Owning the ”Why” — Defining the search product roadmap. Articulating why the
team is building a feature and what success looks like.

Defining KPIs — Working with stakeholders to define the ”north star” metrics (e.g.,
Conversion Rate from Search, RPV, Zero-Result Rate) and owning the analytics
dashboards that track them.

Managing Stakeholders — Gathering requirements from merchandising, marketing,
and leadership and translates them into a prioritized engineering backlog.

The ”Voice of the User” — Championing the user experience, using analytics and
user feedback to identify and prioritize friction points.

6.1.2 The Search Platform Solution Architect

This is the most senior technical-strategy role on the team, acting as the chief
designer of the entire search ecosystem. While the Product Manager defines why
a capability is needed, the Solution Architect is responsible for what the technical
solution will be and how it will integrate with the broader enterprise architecture.

The Search Platform Solution Architect:

Owns the ”Blueprint” — Designs the high-level system architecture, precisely as
detailed in the ”Blueprint for the Modern Search Stack” chapter. This includes
defining microservice boundaries, API contracts, and data flows.

Makes Foundational Technology Choices — Leads the ”Build vs. Buy” analysis.
Selects the core search engine (e.g., OpenSearch vs. Solr), the SaaS vendor, or the
vector database, ensuring the choice aligns with long-term business goals.

Designs Cross-Cutting Concerns — Defines the platform-wide strategy for mission-
critical concerns like security (e.g., defense against scraping) , multi-locale support
(e.g., index-time localization), and high-availability/disaster recovery.

Ensures Enterprise Integration — Works with other architects to ensure the search
platform integrates cleanly with enterprise systems like the PIM, Inventory Service,

87

6 Building and Organizing the Modern Search Team
6.1 The Core Roles of the Modern Search Team

6.1.4 The Search Backend Engineer(s)

Pricing Service, and the real-time event stream (e.g. Kafka). This role guarantees
the search system is a good citizen in the larger tech ecosystem.

6.1.3 The Relevance Engineer

The Relevance Engineer is the specialized search expert who tunes the core engine.
This role is a hybrid of a software engineer and a data scientist, with deep expertise
in the search platform itself (e.g., Elasticsearch, Solr, or a specific SaaS API).

The Relevance Engineer:

Owns the Relevance Pipeline — Configures and tunes all aspects of the lexical and
semantic retrieval stack .

Manages the Query Pipeline — Implements and maintains the query understanding
pipeline, including analyzers, tokenizers, spell-correction, and synonym dictionaries .

Tunes Ranking — Implements the baseline heuristic ranking functions and works
with ML Engineers to integrate LTR models.

Debugs Relevance — The ”first responder” for any ”bad search” complaints. Uses
evaluation harnesses to diagnose why a query is failing and implements the fix.

6.1.4 The Search Backend Engineer(s)

This is the core software developer who builds and maintains the search microservice
application itself. While the Relevance Engineer focuses on what the logic should
be, the Backend Engineer writes the high-performance, production-grade code that
executes that logic.

The Search Backend Engineer(s):

Owns the Service API — Designs, builds, and maintains the primary /search and
/autocomplete APIs, ensuring they are fast, scalable, and secure.

88

6 Building and Organizing the Modern Search Team
6.1 The Core Roles of the Modern Search Team
6.1.6 The Data Scientist(s) / ML Engineer(s)

Implements Data Integrations: Writes the integration code that connects the
search platform to all upstream data sources. This includes fetching data from the
PIM , Inventory Service , Pricing Service , and User Profile Service.

Builds the Indexing Pipeline — Develops the application logic for the ETL pipelines
(both batch and real-time) that transform and load data from source systems into
the search index.

Implements Model Serving — Works with ML Engineers to integrate and serve the
ranking models (e.g., LTR , semantic models) within the low-latency request/response
cycle of the search API.

6.1.5 The Search Platform Engineer(s)

While the Backend Engineer builds the application, the Platform Engineer builds
and operates the infrastructure it runs on. This role is a specialized DevOps or SRE
(Site Reliability Engineer) focused entirely on the search platform’s health.

The Search Platform Engineer:

Owns the Infrastructure — Manages the search cluster (e.g., Elasticsearch/OpenSearch),
including sharding, replication, node provisioning, and scaling to handle traffic.

Owns the Data Pipeline Infrastructure — Manages the systems that run the data
pipelines (e.g., the Kafka cluster , Flink processors, or batch orchestration tools).
The Backend Engineer writes the pipeline’s code; the Platform Engineer ensures the
pipeline runs reliably and scales.

Owns Latency & SLAs — Responsible for monitoring API latency, error rates, and
uptime, and optimizing the cluster and network configuration to meet its SLAs.

Owns Security & Operations — Implements the platform’s network security, access
control, and defensive layers against scraping, parameter tampering, and DoS attacks.

89

6 Building and Organizing the Modern Search Team
6.2 The Merchandiser as a Strategic Partner

6.1.6 The Data Scientist(s) / ML Engineer(s)

This role owns the ”brain” of the search system—the machine learning models that
power modern relevance, personalization, and recommendations.

This role includes:

Owning Learning to Rank (LTR) — The ML Engineer is a primary owner of the
LTR paradigm. Responsible for feature engineering, training, and deploying ranking
models like LambdaMART or DNNs .

Owning Personalization — Developing and maintaining the user models that power
deep personalization, affinity boosting, and session-aware context .

Owning AI-Powered Features — Developing the models for semantic retrieval
(embeddings), Query Understanding (NER, Intent Classification), and AI-driven
recommendations.

Owning MLOps — Builds the automated pipelines for model retraining, validation,
and deployment.

6.2 The Merchandiser as a Strategic Partner

The merchandising team is not on the core search team, but they are its most
important non-technical partner. A common failure mode is for engineers to treat
merchandising requests as ”annoying manual overrides.” A successful architecture
treats merchandisers as strategic power-users.

The search platform must provide the merchandising team with robust, self-service
tools, most notably the Business Rules Engine (BRE) . This UI allows merchan-
disers to:

• Pin & Boost Products: Manually promote specific items for a campaign or
query.

90

6 Building and Organizing the Modern Search Team
6.3 Organizational Models

6.3.3 Model 3: The Hybrid ”Center of Excellence” (Recommended)

• Manage Synonyms: Directly control the query pipeline by adding or remov-
ing synonyms without filing an engineering ticket .

• Create Redirects: Map high-intent queries (”returns”) to the correct content
page.

The engineering team’s job is not to create these rules, but to build the safe, scalable,
and fast system that allows the merchandising team to execute its business strategy.

6.3 Organizational Models

The placement of the search team within the broader company org chart has a
massive impact on its effectiveness.

6.3.1 Model 1: The Centralized ”Platform” Team

In this model, a single ”Search Platform” team exists as a central utility. It serves
all other business units (e.g., E-commerce, B2B, Content) as an internal client.

The pros of it is deep expertise, high consistency, strong ownership of the core
infrastructure. However, it can become a bottleneck. The team is often disconnected
from specific business goals and prioritizes platform stability over feature velocity.

6.3.2 Model 2: The Embedded ”Vertical” Team

In this model, search engineers are ”embedded” directly into a business unit (e.g.,
the ”E-commerce” tribe). They report to the E-commerce Product Manager, not a
central engineering leader.

It has extremely high velocity, and it is perfectly aligned with business goals. The
downside is it leads to massive duplicated effort (e.g., multiple teams building their
own LTR pipelines) and platform fragmentation.

91

6 Building and Organizing the Modern Search Team
6.4 Fostering a ”Relevance-First” Culture

6.3.3 Model 3: The Hybrid ”Center of Excellence” (Recommended)

This is the most scalable and effective model, combining the best of both.

A central team (like Model 1) builds and maintains the core infrastructure: the
search cluster, indexing pipelines, and MLOps framework. They provide “Search
as a Service” to the company, while small, specialized “Relevance” engineers and
PMs (like Model 2) are embedded within business units. These teams use the central
platform to build custom relevance models, tune query pipelines, and run A/B tests
tailored to their unit’s specific needs.

This hybrid model allows for centralized stability and efficiency while enabling
decentralized, business-aligned agility.

6.4 Fostering a ”Relevance-First” Culture

Finally, the search team cannot succeed in a vacuum. It must evangelize its work
and foster a ”relevance-first” culture across the organization. This is achieved by:

• Connecting Search KPIs to Business KPIs: Never present an A/B test
result as just ”nDCG improved by 5%.” Always translate it: ”This new LTR
model improved nDCG by 5%, which our A/B test showed resulted in a +1.5%
lift in RPV and $2M in projected annual revenue.”

• Making the Feedback Loop Visible: Create public-facing dashboards from
the search analytics system that show the top 100 most popular queries, the
top 10 ”zero-result” queries, and the conversion rate from search. This makes
the user’s experience visible to everyone.

• Treating ”Bad Search” as a P0 Bug: When an executive or merchandiser
finds a bad search result, it must be treated with the same urgency as a site
outage. The team’s ability to rapidly diagnose (using the evaluation harness)
and fix the issue builds trust and demonstrates the value of the platform.

92

7 Query and User Intent Understanding

The performance of an e-commerce search system is fundamentally constrained by
its ability to accurately interpret the user’s query. A shallow or incorrect understand-
ing of user intent inevitably leads to irrelevant results, customer frustration, and
abandoned commercial opportunities. This reality establishes the principle that the
quality of the downstream retrieval and ranking stages is capped by the quality of the
initial query understanding stage. This part of the book delves into the technologies
and architectural patterns that form the semantic core of a modern search platform:
the Query and User Intent Understanding system.

Query understanding (QU) treats the user’s query as a first-class citizen in the search
process. While many search efforts focus on the scoring and ranking of results, query
understanding focuses on the precedent step: interpreting the searcher’s intent before
any results are retrieved. The objective shifts from creating an optimal ranking
algorithm to architecting an optimal query interpretation mechanism, against which
results are ultimately judged. This focus is crucial because it directly shapes the
user’s interactive experience through features like autocomplete, spell correction,
and query refinement suggestions.

This is accomplished by decoupling the challenge of language ambiguity from the
core retrieval and ranking systems. A dedicated QU module is responsible for
transforming the user’s raw, often messy query into a clear, structured representation
of intent. By isolating language processing in this manner, the downstream retrieval
and ranking components can operate on clean, well-defined data, making them
significantly simpler and more efficient.

7 Query and User Intent Understanding
7.1 The Query Transformation Pipeline

The next chapters will describe how a user’s query moves through this transformation
process—from basic text processing to using advanced LLMs that deeply understand
and enrich the user’s intent.

The core challenge this system addresses is the ”semantic chasm”—a significant
gap between the natural, nuanced language used by shoppers and the structured,
literal data residing in product catalogs. Historically, e-commerce search relied on
lexical, keyword-based systems, but this approach is proving increasingly inadequate.
Bridging this chasm requires a definitive shift towards semantic technologies that
prioritize understanding user intent over mere keyword matching.

This challenge is perfectly illustrated by the persistent failure of major e-commerce
engines to understand seemingly simple queries. A well-known example from the
paper ”Rethinking e-Commerce Search” highlights how a query for ”red wine $40”
on Amazon over the years has returned items like red-colored shoes, pants (because
their color was ’wine red’), vinegar, and watches1. The system fails to parse ’$40’ as
a price constraint and misinterprets ’wine’ as a color. This demonstrates the deep
ambiguity and compound failures—in this case, of both query understanding and
document understanding —that modern search systems must be architected to solve.

7.1 The Query Transformation Pipeline

Before any sophisticated semantic analysis can be performed, a raw query string
must undergo a series of critical transformations. This initial processing is essential
for handling the inherent messiness of human language—including typographical
errors, synonyms, and grammatical variations—and for bridging the ”vocabulary
mismatch” problem, where users describe products using different terms than those
found in the product catalog.

This chapter details the components of this query transformation pipeline. It will
trace the evolution of techniques for each stage, highlighting a consistent and powerful
trend: the migration from heuristic-based methods to data-driven, context-aware
models powered by artificial intelligence. The objective of this pipeline is not merely

1Rethinking E-Commerce Search, Haixun Wang et al., https://arxiv.org/pdf/2312.03217

94

7 Query and User Intent Understanding
7.1 The Query Transformation Pipeline

7.1.1 Query Type Identification

to clean the query but to augment it, converting a simple string into a semantically
enriched input that can drive the downstream search processes with far greater
precision and recall.

Figure 7.1: Example of Query Pipeline. The components might differ in different
implementations

7.1.1 Query Type Identification

A critical first step in the query transformation pipeline, preceding even language
identification, is to determine the fundamental type of the query. Not all user inputs
are natural language phrases; a significant portion consists of specific, structured
identifiers. The goal of Query Type Identification is to distinguish these different
query patterns to route them to the appropriate processing path, preventing the
misapplication of linguistic transformations to non-linguistic data.

Common query types in e-commerce include:

• Keyword Queries. Standard natural language searches like ”red running
shoes.”

• Identifier Queries. Searches for a specific product Stock Keeping Unit
(SKU), Universal Product Code (UPC), manufacturer part number, or ISBN.
For example, MK-458-B-RED or 978-0134685991.

95

7 Query and User Intent Understanding
7.1 The Query Transformation Pipeline

7.1.1 Query Type Identification

• Category ID Queries. Internal system identifiers that a user might have
bookmarked or copied from a URL.

• Category Name queries. The name of a category for which a user expects
to be redirected to a category page rather than getting all relevant products
having such keywords in the text fields.

• Navigational or Informational Queries. Searches for non-product content,
such as ”return policy,” ”shipping information,” or ”size guides”.

Correctly identifying these types is crucial because applying linguistic rules to an
identifier query is not only useless but actively harmful. Attempting to spell-correct,
stem, or lemmatize a SKU like B07YF32Y5N would corrupt the identifier and
guarantee a ”zero results” outcome.

The most common and effective method for identifying these queries is through
pattern matching and heuristics. Identifiers like SKUs, UPCs, and ISBNs often
follow predictable formats that can be accurately captured with regular expressions.
For instance, a system can use a rule that classifies any query matching the pattern
^[A-Z0-9∖-]+$ and containing at least one digit as a potential SKU.

For ambiguous cases, a lightweight machine learning classifier can be trained. This
model would use features like query length, the presence of alphanumeric characters,
character n-grams, and the presence of special characters to predict whether a query
is a KEYWORD, SKU, PART NUMBER, etc. However, this option should be used
with caution, as it increases the likelihood of misclassification.

Once a query is classified as an identifier, it can bypass the entire linguistic pipeline.
Instead of being sent for normalization, spell correction, and expansion, it is routed
directly to a targeted search against the corresponding field in the product index
(e.g., sku field:”MK-458-B-RED”). This specialized routing dramatically improves
both the accuracy and latency for a significant and valuable segment of user searches.

The dictionary method works great as well. However, be careful with making this
dictionary auto-populated from the sources you don’t control. For example, a supplier
might choose a commonly searched word as a product identifier (e.g., “battery” or
“charger”). If your dictionary automatically maps such identifiers to the supplier’s

96

7 Query and User Intent Understanding
7.1 The Query Transformation Pipeline

7.1.2 Language Identification

product page, users searching for that word could be redirected to a single supplier’s
product instead of seeing all products from different suppliers that contain this word
in their descriptions or attributes.

Similarly, when a query is classified as informational, it should be routed to a unified
index that contains not only products but also help center articles, blog posts, and
other site content to provide a direct answer. This prevents the user from being
shown a ”zero results” page for a perfectly valid, non-transactional question.

7.1.2 Language Identification

Before any text can be normalized or transformed, the system must determine the
language in which the query was written. Of course, this is relevant only if you work
with multi-langual content and queries formulated in multiple languages.

This step is non-trivial, as traditional statistical language identification models
perform poorly on the short, ambiguous text characteristic of search queries (often
fewer than 50 characters).

Modern systems address this by moving beyond the query text itself and incorporating
external signals into a machine-learned classifier.

These signals can include:

• User Context. The user’s country or the language setting of their browser
provides a strong, albeit not definitive, prior. For example, a significant fraction
of English-language queries originate from countries where English is not the
primary language.

• Behavioral Data. Analyzing the language of documents that users click on
for a given query provides a powerful, aggregated signal. If a query consistently
leads to clicks on Spanish-language products, it is a strong indicator of the
query’s language intent.

97

7 Query and User Intent Understanding
7.1 The Query Transformation Pipeline

7.1.3 Foundational Text Processing

Correctly identifying the language is essential in e-commerce for applying the correct
linguistic models downstream and for scoping retrieval to the appropriate country-
specific product catalog or currency

7.1.3 Foundational Text Processing

The initial steps in any query processing pipeline involve a set of standard text
normalization techniques. While seemingly basic, these operations form a necessary
foundation for all subsequent, more complex analyses. The goal is to reduce a query
to its essential semantic components, stripping away variations in form that do not
alter its core meaning. This process ensures that the retrieval engine can operate on
a canonical, predictable representation of the query’s terms.

Key preprocessing steps include:

• Case Normalization. This involves converting all text to a single case, typi-
cally lowercase (e.g., ”iPhone Case” becomes ”iphone case”). This simple step
is crucial for ensuring that searches are case-insensitive, preventing mismatches
caused by arbitrary capitalization.

• Character and Diacritics Handling. User input can contain a wide variety
of special characters, punctuation, and diacritical marks (e.g., accents). A
robust normalization process will remove or transliterate these characters to
a standard form (e.g., ”João” becomes ”joao”). This prevents the retrieval
system from failing to find a match due to minor character-level variations.

• Stop Word Removal. This is the process of identifying and removing
common words that typically carry little semantic weight, such as ”a,” ”the,”
”in,” or ”for.” While this can reduce noise, it must be applied with caution in
an e-commerce context. Some words that are stop words in general language
can be highly meaningful in product search (e.g., the brand ”The The” or the
query ”vitamin a”). Therefore, stop word lists must be carefully curated and
often applied contextually rather than universally.

98

7 Query and User Intent Understanding
7.1 The Query Transformation Pipeline

7.1.3 Foundational Text Processing

After these initial sanitization steps, the next task is to handle grammatical variations
by reducing words to their root form. Two primary techniques are employed for this
purpose, stemming and lemmatization.

Stemming is a heuristic-based process that algorithmically chops off the ends
of words to remove common morphological and inflexional suffixes. For example,
the words ”running,” ”ran,” and ”runner” might all be stemmed to the root ”run.”
Stemming is computationally inexpensive and fast, but its crudeness can be a
significant drawback. It can be overly aggressive, conflating distinct concepts, and it
sometimes produces non-word stems (e.g., ”studies” might become ”studi”), which
can interfere with downstream processing.

Lemmatization is a more linguistically sophisticated technique that uses a vocab-
ulary and morphological analysis to return the base or dictionary form of a word,
known as the lemma. For example, the word ”better” would be correctly lemmatized
to its root, ”good,” a connection that stemming could never make. Lemmatization
is more context-aware and produces linguistically valid root words.

While lemmatization is a significant improvement over stemming, both can be seen
as heuristic approaches to a more generalized problem: canonicalization. The goal of
canonicalization is to map different surface forms of a word to a single, canonical
representation. Rather than relying on fixed algorithms or generic lexical databases,
a state-of-the-art system can build a domain-specific knowledge base for this task.

This can be achieved through data-driven methods, such as:

• Corpus Analysis. Using word embeddings (e.g., word2vec) to analyze the
product catalog and identify which words are used in similar contexts, suggest-
ing they are related forms.

• Behavioral Analysis. Mining search logs to see which words are used
interchangeably in query reformulations or lead to clicks on the same products.

This approach transforms the task from simple text processing into a machine
learning problem, allowing the system to learn, for instance, that ”iphone” and
”iphones” should be canonicalized to a single form, even though a generic lemmatizer

99

7 Query and User Intent Understanding
7.1 The Query Transformation Pipeline

7.1.3 Foundational Text Processing

might not handle such unknown words. This allows for a more accurate balance of
precision and recall tailored to the specific vocabulary of the e-commerce platform.

Once character-level variations are handled, the query string must be broken into
a sequence of discrete units, or ”tokens.” This process, known as Tokenization,
is a critical prerequisite for all subsequent analysis. While seemingly as simple as
splitting text on whitespace, tokenization in e-commerce presents unique challenges.

• Handling Punctuation and Affixes. A tokenizer must be robust enough
to handle variations. For instance, a hyphen in ”California-based” should
likely be treated as a separator, while the hyphen in a product model like
”WH-1000XM3” should be preserved. A common strategy is to use multiple
tokenizations (e.g., indexing ”women’s” as both ”womens” and ”women”) to
improve recall.

• Recognizing Non-Word Tokens. E-commerce queries are rich with mean-
ingful non-word tokens. Part numbers (A1428-B), model numbers (RTX-4090),
and dimensions (2x4) require specialized tokenization rules to prevent them
from being incorrectly broken apart.

• Adapting to Multilingual Text. For languages like German that use
extensive compounding (Fruchtsalat for fruit salad), tokenization should include
a decompounding step. For languages like Chinese and Japanese, which lack
explicit word separators, a language-specific word segmentation algorithm is
necessary.

The first two capabilities are discussed later in the Text Tagging section. As for
multilingual text processing, it’s a vast topic, and I can’t resist introducing you to
my book on the subject, “Beyond English: Architecting Search for a Global World.”

Like all text processing, tokenization involves a trade-off between precision and
recall. An overly aggressive tokenizer may destroy meaningful product codes, while
a too-literal one may fail to match simple variations.

Each of these character-level filtering steps represents a fundamental trade-off of
precision for recall. For example, removing accents or ignoring capitalization allows

100

7 Query and User Intent Understanding
7.1 The Query Transformation Pipeline

7.1.4 Text Tagging

the system to retrieve more documents (increasing recall), but runs the risk of
conflating two words with different meanings (reducing precision). While these
foundational filters are generally conservative and beneficial, it is important to
recognize that they are the first of many decisions in the pipeline that intentionally
sacrifice some level of precision to avoid failing to retrieve relevant documents.

These foundational steps are a necessary but insufficient prerequisite for true query
understanding. They operate purely at a lexical level and cannot resolve the deeper
semantic ambiguities inherent in language, a task that requires the more advanced
models discussed in the following sections.

7.1.4 Text Tagging

Once a query has been normalized and tokenized, the next step can be Text Tagging.
This is the process of identifying and labeling sequences of tokens that correspond
to known, predefined entities within the e-commerce domain. The goal is to perform
a fast, first-pass annotation of the query, recognizing terms that have a specific,
unambiguous meaning in the context of the product catalog.

At its core, text tagging operates by matching query n-grams (sequences of one or
more tokens) against a set of pre-compiled dictionaries, often referred to as gazetteers.
These gazetteers are not generic lexical resources; they are domain-specific knowledge
bases derived directly from the structured data in the product catalog. Common
gazetteers in an e-commerce setting would include:

• A complete list of all brand names (”Sony”, ”Michael Kors”, ”Under Armour”).

• A list of all available colors (”navy blue”, ”scarlet”, ”charcoal gray”).

• A comprehensive list of product categories (”dslr camera”, ”running shoes”,
”tote bag”).

• Other relevant attributes like materials (”cotton”, ”leather”), features (”water-
proof”, ”4k”), or compatibility (”for iPhone 14”).

101

7 Query and User Intent Understanding
7.1 The Query Transformation Pipeline

7.1.5 Lexical Spell Correction and Fuzzy Search

When a query like ”navy blue sony camera” is processed, the text tagging system
scans the query and finds matches in its gazetteers. It would identify ”navy blue”
as a color, ”sony” as a brand, and ”camera” as a product category. This process
effectively converts a simple string into a partially structured representation, laying
the groundwork for more advanced parsing.

The primary advantage of this dictionary-based approach is its speed and precision
for known entities. For terms that have a single, clear meaning within the catalog, a
direct lookup is highly efficient and reliable. However, this method also has significant
limitations, chief among them being its inability to resolve ambiguity. For example,
in the query ”apple watch,” a simple tagger might recognize ”apple” as both a brand
(Apple Inc.) and a product attribute (e.g., for apple-scented candles). It lacks
the contextual understanding to disambiguate between these potential meanings.
Similarly, it cannot identify new or misspelled entities that are not present in its
pre-compiled dictionaries.

Despite these limitations, text tagging is a fundamental and valuable component of
the query understanding pipeline. It serves as a high-speed filter that handles the
”low-hanging fruit”—the unambiguous, known entities—before passing the query to
more computationally expensive and context-aware models, such as the Transformer-
based NER systems discussed later, which are designed specifically to resolve the
complex cases of ambiguity and novelty that simple tagging cannot.

7.1.5 Lexical Spell Correction and Fuzzy Search

While advanced AI models like those used in RAG (discussed in the next section)
represent the state-of-the-art for semantic understanding, the foundational layer of
error handling in search is lexical tolerance, commonly known as fuzzy search or
approximate string matching. A core business driver for optimizing this function is
unequivocal: users who engage with site search convert at a significantly higher rate,
but this is contingent on them finding relevant results.

The primary business risk is the ”no results found” page. This page represents a
direct failure to meet user intent and a high probability of site abandonment. User
queries are inherently imperfect and replete with errors, including typographical

102

This is a demonstration PDF.
The full book is available for purchase:

https://testmysearch.com/my-books.html

8 Advanced Product Understanding

In previous chapters, we have explored in detail how a modern search engine can
achieve a deep understanding of a user’s query and user’s intent in general. However,
even a perfectly understood query is useless if the system is unable to understand
the documents it is searching—in the world of e-commerce, these are products.

It is here that we encounter a fundamental problem that can be called the ”semantic
chasm”: the vast gap between nuanced, often implicit human language and the
literal, structured data in a product catalog. A shopper is not just searching for
keywords; they are looking for solutions to their needs, expressing them in queries
like ”healthy snacks for kids” or ”alternatives to ice cream.”

This chapter is dedicated to the second, equally important part of the search equation:
product understanding. We will explore how to move beyond simple text and attribute
matching to teach a search engine to understand products in the way an experienced
sales consultant does.

8.1 Defining ”Product Intelligence”

To bridge this chasm, a system must possess what we will call ”product intelli-
gence”—the ability to understand a product in multiple dimensions:

• What it IS — its explicit attributes (brand, color, material).

• What it is FOR — its use cases, occasions, and the problems it solves (e.g.,
”gift for mom,” ”sunburn relief”).

8 Advanced Product Understanding
8.3 Structuring the Catalog for Search
8.3.1 PIM as a Single Source of Truth

• WHO it is for — its target audience and personas (e.g., ”for kids,” ”for
professional photographers”).

• How it RELATES — its relationships with other products (compatibility,
alternatives, accessories) and concepts.

8.2 Explicit vs. Implicit Knowledge about Products

There are two architectural philosophies for achieving ”product intelligence,” the
explicit and implicit paths.

The Explicit Path is about modeling knowledge about products and their intercon-
nections in a structured format, the epitome of which is the Product Knowledge
Graph (PKG). This approach seeks to create an explicit, machine-readable map of
the entire catalog and its connections to the outside world.

The Implicit Path is about leveraging the vast, pre-existing world knowledge embed-
ded in LLMs and teaching them to understand the specific context of the product
catalog. This approach does not build knowledge from scratch but adapts what
already exists.

8.3 Structuring the Catalog for Search

Before embarking on the creation of complex artificial intelligence systems, a solid
foundation must be laid. In the context of product understanding, this foundation
is high-quality, well-structured product data. This section is dedicated to the two
pillars of data management—Product Information Management (PIM) systems and
product taxonomy—arguing that they are not merely administrative tasks but a
necessary prerequisite for any advanced understanding system.

142

8 Advanced Product Understanding
8.3 Structuring the Catalog for Search

8.3.2 Product Taxonomy

8.3.1 PIM as a Single Source of Truth

A Product Information Management (PIM) system is the central hub for all product-
related content, acting as a ”single source of truth” that eliminates data silos. In
a typical organization, product information can be scattered across ERP systems,
spreadsheets, marketing department databases, and supplier files. A PIM system
solves this problem by consolidating all information in one place.

Key practices for effective PIM management include data Centralization, format
standartization, and data enrichment.

Data Centralization unifies all product information into a single repository to
ensure consistency and accuracy across all channels. This centralization ensures that
when a product’s core data (like stock or price) is updated, it is updated once and
propagates to the search index correctly, preventing data stale-ness.

Format Standardization establishes clear standards for descriptions, specifications,
and categories, including uniform naming conventions and units of measurement.
Data Enrichment supplements data not only with technical specifications but also
with emotional content, such as product stories, high-quality images, and videos, to
create a more engaging customer experience.

This standardization is what allows for reliable faceting; it ensures the index contains
50-inch and not a mix of "50", 50", 50 in., and 50 inch, which would fragment
the facet counts.

Finally, Enrichment provides the rich, unstructured text (like product stories and
use-case descriptions) that modern embedding-based (vector) search models feast on,
dramatically improving recall against abstract or ”story-based” queries.

8.3.2 Product Taxonomy

If PIM is the data repository, then product taxonomy is its structural framework.
Taxonomy defines how products are organized and classified, which directly affects
site navigation, search accuracy, and search engine optimization.

143

8 Advanced Product Understanding
8.3 Structuring the Catalog for Search

8.3.2 Product Taxonomy

8.3.2.1 Dual Role of Taxonomy

A core challenge in taxonomy design is that it must serve two distinct masters: the
human user and the search algorithm. These two roles create a productive tension
that must be balanced in its architecture.

Serving the Human (Navigation) This is the classic information architecture role.
The taxonomy must provide an intuitive, logical browsing experience that allows a
user to progressively discover products (e.g., Home > Furniture > Living Room >
Sofas). This structure guides users who are in a discovery-oriented mindset,
building their mental model of the store’s inventory one click at a time.

The language used in this navigational taxonomy is critical. It must be customer-
centric, using terms that users would naturally search for (e.g., ”Phone Chargers”)
rather than internal merchandising jargon (e.g., ”Mobile Power Accessories”). A
clear, consistent, and predictable navigation taxonomy reduces cognitive load and
builds user trust.

This human-facing structure is the direct source for primary user interface elements
like navigation menus and breadcrumbs (e.g., Home > Apparel > Shoes). Because
these category labels are often displayed to the user ”as is,” they must be clean,
human-readable, and well-formatted (e.g., ”Men’s Running Shoes”). This is distinct
from the machine-readable ID (e.g., cat id 11023), which is used by the backend.
For the a-few-language setup, you may need to store the localized versions of them
separately.

Serving the Machine (Search) This is the taxonomy’s role as an algorithmic
blueprint. For the search engine, the taxonomy is a definitive, machine-readable
classification system. Each node in the taxonomy is assigned a stable, unique
identifier (e.g., category id: 472). This ID, not the human-readable label, is the
”machine-readable” element that is indexed with the product. This ID acts as the
primary key or ”connective tissue” that links a product to a vast set of rules, models,
and metadata.

144

8 Advanced Product Understanding
8.3 Structuring the Catalog for Search

8.3.2 Product Taxonomy

The taxonomy’s machine-facing role is multi-faceted:

• ”Ground Truth” for Machine Learning. The taxonomy provides the
definitive set of labels for training Query Classification models. The quality
of the query understanding service is therefore fundamentally limited by the
quality and granularity of the product taxonomy. A model cannot learn to
classify queries for ”trail running shoes” if such a category does not exist.

• Source for Facets and Filters. The taxonomy is the primary source for
generating logical facets and filters, allowing users to refine their results. To
illustrate, a well-designed hierarchical taxonomy directly enables hierarchical
faceting, allowing a user to see the parent category (Apparel) and its children
(Shoes, Shirts, Pants) with their respective counts, providing crucial context
for narrowing results.

• Basis for Business Rules and Relevance Tuning. The category ID allows
the system to apply category-specific business rules and ranking strategies.

The latter point deserves some additional clarification. For example, the following
processing can be applied here:

• Attribute Boosting. For example, for queries classified into the Apparel
category, the system can boost the Color and Size attributes; for Electronics,
it can boost Brand and Model Number.

• Synonym Management. You can define that ”pants” and ”trousers” are
strong synonyms only within the Apparel category, but not in Cookware (where
”pants” is likely a typo for ”pans”).

• Variant Definition. You can define that for the Shoes category, the attributes
Color and Size are the primary variant attributes, which informs how products
are grouped in the results.

In essence, these functions demonstrate that the taxonomy is far more than a simple
navigational aid for users. It serves as the foundational logic layer upon which the
machine builds its understanding of context, relevance, and product relationships,
directly enabling sophisticated and intelligent search experiences.

145

8 Advanced Product Understanding
8.3 Structuring the Catalog for Search

8.3.2 Product Taxonomy

8.3.2.2 Architectural Design Patterns for Search-Optimized Taxonomies

The architectural choices made in designing the taxonomy have direct and profound
consequences for search performance.

Flat vs. Hierarchical Structures — A flat structure (e.g., a simple list of tags) offers
flexibility but provides weak signals for relevance. A deep hierarchical structure is
far more powerful for search. It allows the system to understand the relationships
between concepts (e.g., a ”DSLR” is a ”Camera”), which is essential for query
classification and for providing logical parent-child faceting.

Single-Parent vs. Multi-Parent (Polyhierarchy) — This is a classic e-commerce
dilemma. A strict, single-parent taxonomy (where a product lives in only one
category) is simple to manage but fails to capture real-world use cases. Should
a ”Smartwatch” live under Electronics > Wearable Tech or Apparel > Acces-
sories? A polyhierarchy, which allows a product to exist in multiple category nodes,
is the superior solution for search recall, as the product is now discoverable from
multiple logical paths. However, this introduces complexity in facet counting (to
avoid double-counting) and in query classification, which must now be capable of
predicting a set of relevant categories, not a single path.

Attribute-Driven vs. Thematic Taxonomies — Attribute-Driven (Logical) is the
standard hierarchy based on a product’s intrinsic properties (e.g., Shoes > Men’s
> Running Shoes). It is essential for faceted retrieval. Thematic (Conceptual)
categories are virtual categories that map directly to user intent or occasion (e.g.,
”Gifts for Mom,” ”Back to School,” ”Beach Vacation”). This structure is critical
for solving the complex, occasion-based queries discussed in Part 2, as it provides a
pre-curated landing page that directly answers the user’s abstract need. A mature
search platform requires both.

8.3.2.3 Taxonomy as a Core Search Signal

The product taxonomy is not a passive data structure; it is an active and critical
signal that is injected into every stage of the modern search pipeline.

146

8 Advanced Product Understanding
8.3 Structuring the Catalog for Search

8.3.2 Product Taxonomy

The taxonomy is the direct source for the ”Category” facet. This is often the most
important and most-used filter, as it allows users to ”slice” the entire result set in
the most logically coherent way. While other facets like Brand or Price allow users
to ”dice” the results, the category facet is the primary tool for narrowing semantic
context and is a crucial part of the discovery journey.

When the Query Understanding service classifies a query (e.g., query: ”apple”,
classified category: ”Electronics”), this signal can be used to scope the initial
retrieval. This dramatically improves precision by eliminating irrelevant results (e.g.,
apple-flavored groceries) from the candidate set before ranking ever begins. This
pre-filtering also lowers latency by forcing the search engine to rank a much smaller,
more relevant slice of the index.

A product’s category is a powerful feature for Learning to Rank (LTR) models. The
model can learn the relative importance of attributes based on the category (e.g., for
Laptops, RAM and Storage are critical, whereas for Handbags, Material and Color
are).

This is the taxonomy’s most advanced role. A product’s assigned category (Laptop)
is a foundational node for the Product Knowledge Graph (PKG) (e.g., Laptop
--is a--> Computer). It also provides the essential ”grounding” that constrains and
informs the LLM-based product understanding models discussed in the following
sections.

8.3.2.4 The Curation and Maintenance Lifecycle

A taxonomy is not a ”set it and forget it” project. It is a living system that must
evolve with the catalog and with changing customer language.

The traditional approach involves merchandisers manually assigning a category to
every new product. While this results in high-quality data, it is slow, expensive, and
completely unscalable for dynamic catalogs with thousands of new SKUs.

The modern solution is to treat this as a machine learning problem. A text classi-
fication model is trained on product titles, descriptions, and attributes to predict

147

8 Advanced Product Understanding
8.4 Navigating the Complexity of Product Variants

the correct category node. This is the only scalable method for managing a large,
rapidly changing catalog.

The optimal architecture combines machine scale with human expertise. An ML
model auto-classifies all new products, flagging any low-confidence predictions for
a manual review by a human merchandiser. This ensures high data quality while
focusing scarce human resources only where they are most needed.

The most advanced systems create a feedback loop from search analytics back to
the taxonomy team. By analyzing ”zero result” queries or queries that lead to high
reformulation rates, merchandisers can identify gaps. For example, if thousands of
users search for ”air fryer” but the site only has a ”Convection Ovens” category,
this is a strong signal to create a new ”Air Fryers” node in the taxonomy. This
makes the taxonomy responsive to customer language and intent, not just internal
merchandising structures.

8.4 Navigating the Complexity of Product Variants

One of the most pervasive and challenging aspects of product understanding in
e-commerce is handling product variants. These are items that differ in specific
attributes (like size, color, material, or configuration) but are fundamentally based
on the same core product or model. A single t-shirt model might come in five colors
and six sizes, resulting in 30 distinct purchasable items (SKUs). Effectively managing
and presenting these variants is crucial for user experience, inventory management,
and search relevance.

The core challenge lies in a fundamental tension: should each variant be treated as
a separate product in the search index, or should they be grouped under a single
”base” product representation? Getting this wrong leads to significant usability
problems. Representing fundamentally different products as mere variants of each
other confuses users and makes comparison difficult. Conversely, treating every
minor variation as a distinct product listing clutters search results, overwhelms users
with choices, makes discovery tedious, and increases the risk that users abandon
their search before finding the specific combination they need.

148

8 Advanced Product Understanding
8.4 Navigating the Complexity of Product Variants

8.4.2 Indexing Strategies for Variants

The guideline derived from user research is clear: different products should have
different listings, while product variations should be grouped under a
single listing. However, implementing this requires careful consideration of data
modeling, indexing strategies, and presentation layer design.

8.4.1 Data Modeling Patterns for Variants

How variants are represented in the underlying Product Information Management
(PIM) system dictates how they can be handled in the search index. Several common
patterns exist:

• Base Product with Explicit Variants. This is a common approach where
a clear distinction is made between a conceptual ”base” or ”master” product
(e.g., ”Men’s Classic T-Shirt”) and its concrete, purchasable variants (e.g.,
”Men’s Classic T-Shirt, Blue, Medium”). The variants often inherit common
attributes from the base product and only store the differentiating attributes.
This structure can be hierarchical, sometimes supporting multiple levels (e.g.,
style -> color -> size), though often limited to one or two levels in standard
platforms.

• Product Families/Groups. In this model, there isn’t necessarily an explicit
”base” product entity in the database. Instead, all related variants are linked
by a common ”family ID” or shared attribute value. Each variant is a complete
product record in itself. While this can simplify data integration with ERP
systems that model products flatly, it introduces data duplication for common
attributes across variants. Custom tooling might be needed to manage shared
attributes efficiently.

• Categories as Base Products. A less common pattern, sometimes used for
highly configurable products or by manufacturers with a limited product line,
involves using the category hierarchy itself to represent the ”base” product.
The category page acts as the main product description, and the individual
products within that category are the variants. This leverages the platform’s
existing category features (including faceting) for variant selection but requires
significant customization of category page templates.

149

8 Advanced Product Understanding
8.4 Navigating the Complexity of Product Variants

8.4.2 Indexing Strategies for Variants

8.4.2 Indexing Strategies for Variants

The chosen data model directly influences how variants are indexed for search, which
in turn impacts retrieval, faceting, and the user experience on the Search Engine
Results Page (SERP):

• Index Variants Only. Each individual variant (SKU) is indexed as a separate
document in the search engine.

– Pros. Simple to implement; ensures every purchasable item is searchable
by its specific attributes.

– Cons. Leads to cluttered SERPs showing seemingly identical products
(e.g., multiple listings for the same t-shirt in different sizes). Makes it
hard for users to grasp the available options for a single model. Requires
sophisticated frontend logic or manual curation to visually group variants
on the SERP. Another challenge with grouping similar results is that they
don’t necessarily appear consecutively. Grouping items from positions 2,
12, and 21 together may not always be appropriate, even if they are very
similar to one another.

• Index Base Products Only (Variant Rollup). Only the base product is
indexed, but its document is enriched with aggregated information from all its
variants.

– Pros. Provides cleaner, less cluttered SERPs, focusing on the core product
model. Aligns better with user browsing behavior (discover the model
first, then select specifics). Reduces index size compared to indexing all
variants.

– Cons. Requires complex indexing logic (often called ”variant rollup”).
Custom value providers or indexing scripts are needed to gather all
available colors, sizes, etc., from the variants and store them (often as
multi-value fields) in the base product document. Facet counts become
more complex to calculate correctly (see below). It can be difficult to
surface which specific variant matched the user’s query (e.g., did ”blue

150

This is a demonstration PDF.
The full book is available for purchase:

https://testmysearch.com/my-books.html

9 Candidate Retrieval Architectures

Once the user’s query has been processed and understood by the Query Understanding
service, the next stage in the search pipeline is candidate retrieval. The goal of
this stage is to efficiently search through the entire product catalog—which may
contain millions or even billions of items—and select a smaller, manageable subset
of potentially relevant candidates. This initial filtering step is critical for system
performance, as it allows the more computationally expensive ranking stage to focus
its resources on a few hundred or thousand promising items instead of the entire
corpus.

This part of the book moves beyond a simple description of algorithms to establish
a core architectural philosophy: a modern retrieval system is not a monolith but a
multi-signal ensemble. The primary goal of this stage is to optimize for recall
under strict latency constraints, casting a wide net to capture all potentially relevant
items for the downstream ranking engine. We will explore the three fundamental
signal types that form the pillars of this approach—lexical, semantic, and behav-
ioral—and position them as complementary components in a unified architecture.
This framing immediately elevates the discussion from a catalog of techniques to a
strategic architectural blueprint.

The choice is not which retriever to use, but how to orchestrate multiple retrievers.
This addresses the core challenge of serving a diverse distribution of queries, from
specific, long-tail keyword searches to broad, discovery-oriented semantic queries
and popular, behavior-driven head queries. The high-quality, structured query
understanding explained in the previous chapter is the essential input that allows for
the intelligent routing and weighting of these multiple retrieval signals, creating a
system that is both powerful and adaptable.

9 Candidate Retrieval Architectures
9.1 Lexical Keyword Retrieval

9.1.2 Ranking with Okapi BM25

9.1 Lexical Keyword Retrieval

This chapter establishes the baseline: high-precision, efficient keyword matching. It
positions lexical retrieval not as an outdated technology, but as an indispensable
component of any modern search stack, particularly for queries where exact keyword
matches are non-negotiable.

9.1.1 The Inverted Index Engine

At the heart of any keyword-based search system lies a foundational data structure:
the inverted index. Its design is the key to the sub-second query performance
that users have come to expect. Conceptually, an inverted index is a dictionary-like
structure that maps content, such as words or tokens, to their locations within a set
of documents. Instead of storing a list of documents and the words they contain, it
stores a list of all unique words (the term dictionary) and, for each word, a list of
the documents in which it appears (the postings list) and (often) the position of the
word in the document.

This inversion of the traditional document-to-word mapping allows for extremely
fast lookups. When a user submits a query, the system tokenizes the query string,
looks up each token in the term dictionary, and retrieves the corresponding postings
lists. By performing efficient set operations (like intersections and unions) on these
lists, the system can rapidly identify the subset of documents that contain the query
terms. This process avoids the need to scan every document in the catalog for every
query, reducing the search complexity from a linear operation over the number of
documents to one that is dependent on the number of query terms and the length of
their postings lists. This fundamental efficiency is why the inverted index remains the
cornerstone of lexical search engines like Apache Solr, Elasticsearch and OpenSearch.

9.1.2 Ranking with Okapi BM25

While the inverted index provides the structure for fast lookups, a scoring algorithm is
needed to rank the retrieved documents. For decades, the state-of-the-art algorithm

164

9 Candidate Retrieval Architectures
9.1 Lexical Keyword Retrieval

9.1.3 Lexical Search Limitations

for lexical retrieval has been Okapi BM25 (Best Match 25). BM25 is a sophisticated
evolution of the classic TF-IDF (Term Frequency-Inverse Document Frequency)
model, incorporating two key refinements that make it highly effective in practice.

First, BM25 introduces the concept of term frequency saturation. It correctly
intuits that the relevance of a document does not increase linearly with the number
of times a query term appears. The first occurrence of a term is highly significant,
but the marginal relevance of each subsequent occurrence diminishes. A product
description that mentions ”waterproof” ten times is not necessarily ten times more
relevant than one that mentions it once. BM25 models this saturation effect,
preventing documents that engage in ”keyword stuffing” from being unfairly boosted.
This behavior is controlled by the hyperparameter.

Second, BM25 implements document length normalization. It recognizes that a
longer document has a higher probability of matching a query term purely by chance.
To compensate, the algorithm penalizes documents that are longer than the average
document length in the corpus, ensuring that shorter, more concise documents are
not unfairly disadvantaged. This normalization is controlled by the hyperparameter.

The scoring function for a document 𝑑 given a query 𝑞 containing terms 𝑡𝑖 is given
by:

score(𝑑, 𝑞) =
∑︁

𝑡𝑖∈𝑞

IDF(𝑡𝑖) · tf(𝑡𝑖, 𝑑) · (𝑘1 + 1)
tf(𝑡𝑖, 𝑑) + 𝑘1 ·

(︁
1 − 𝑏 + 𝑏 · |𝑑|

avgdl

)︁

where tf(𝑡𝑖, 𝑑) is the term frequency of 𝑡𝑖 in 𝑑, |𝑑| is the length of document 𝑑,
and avgdl is the average document length. Due to its proven effectiveness and
computational efficiency, BM25 remains the default ranking algorithm in widely used
search engines like Elasticsearch and OpenSearch and serves as a powerful baseline
for any search system.

9.1.3 Lexical Search Limitations

The primary strength of BM25 lies in its precision and efficiency for queries where
specific keywords are critical. However, its fundamental limitation is its complete

165

9 Candidate Retrieval Architectures
9.1 Lexical Keyword Retrieval

9.1.4 The Reality of Lexical Ranking in SaaS

reliance on lexical matching. BM25 has no inherent understanding of semantics;
it operates on strings of characters, not on concepts. This leads directly to the
vocabulary mismatch problem, a central challenge in information retrieval where
a search for ”sneakers” will fail to retrieve products listed as ”running shoes,” resulting
in poor recall and a frustrating user experience.

This limitation defines the boundary of what lexical search can achieve. It excels
when user intent is unambiguous and literal. When a user enters a specific model
number like ”Canon EOS 90D” or a technical term like ”NEMA 17 stepper motor,”
they are expressing a high degree of certainty and expect an exact match. In these
scenarios, the failure of a retrieval system to prioritize the exact lexical match over a
semantically similar but incorrect item (e.g., ”Canon EOS 80D”) is a critical user
experience failure. Lexical retrieval’s core value is in satisfying this user certainty.

Therefore, an architect should not view lexical search as a ”legacy” system to be
replaced, but as a specialized tool for a specific and crucial class of high-intent queries.
The architectural challenge is not replacement, but integration. This limitation is the
primary motivation for the next chapter, which introduces a new paradigm designed
to overcome the lexical boundary by understanding the meaning behind the words.

9.1.4 The Reality of Lexical Ranking in SaaS

While Okapi BM25 is the established state-of-the-art for lexical ranking and the
default in modern open-source engines, practitioners must be aware that not all
commercial SaaS search platforms implement the full algorithm. The reasons for
this divergence are often rooted in the trade-offs between theoretical performance,
multi-tenant architecture, and the need for simplicity for business users.

A common simplification is to move away from BM25’s sophisticated, non-linear
scoring and toward a more linear, field-weighted model. For instance, one prominent
enterprise search provider’s engine was historically built around a highly configurable,
”sum of weights” model. In this paradigm, relevance is not calculated using term
frequency saturation or document length normalization. Instead, the administrator
assigns explicit ”ranking points” to each indexed field. A match in the title field
might be worth +100 points, a match in brand +75, and a match in description

166

9 Candidate Retrieval Architectures
9.1 Lexical Keyword Retrieval

9.1.4 The Reality of Lexical Ranking in SaaS

+25. The final score for a document is simply the sum of these static points for all
matching terms.

This model is far more transparent and easier for a business stakeholder to understand
than the non-linear curves of BM25’s k1 parameter. However, it completely ignores
term frequency saturation, meaning a product that ”keyword stuffs” the word
”waterproof” ten times in its description would get ten times the points, a problem
BM25 was specifically designed to solve.

Another common simplification, even in systems based on Lucene or Elasticsearch,
is to disable document length normalization. The b parameter in the BM25 formula
requires knowing the average document length (avgdl) of the entire corpus. In a
multi-tenant SaaS environment, calculating and maintaining this avgdl for every
tenant’s index adds architectural complexity. A provider might choose to disable
this feature (effectively setting 𝑏 = 0) to improve performance and isolation, at the
cost of no longer penalizing overly long documents that match terms by chance.

This divergence from the academic best practice is often positioned as a feature. A
vendor may market their simplified, field-weighted system as ”more transparent,”
”easier to configure,” or ”giving you direct control over business rules” compared to
the ”black box” of BM25. While this transparency is valuable, it is a trade-off. It
sacrifices the proven, statistical power of BM25 for a simpler, more deterministic
model. Practitioners must therefore investigate what lexical ranking model is actually
being used by their chosen platform, as it has significant implications for relevance
tuning.

Furthermore, the method for combining scores from different fields is a critical point
of divergence. In e-commerce, it is often more important to take the max value
from a set of fields rather than a simple sum. This principle assumes that a product
is highly relevant if it has one perfect match (e.g., the query ”iPhone 14” in the
product name field) rather than many weak matches (e.g., the same query appearing
10 times in user-generated reviews).

A clear example of this philosophy can be seen in SAP Commerce (formerly Hybris).
This platform slightly customized its integration with Apache Solr, moving away
from the default ”sum of scores” logic. Their implementation uses a custom ranker,

167

9 Candidate Retrieval Architectures
9.2 Semantic Vector Retrieval

9.2.1 The Power of Embeddings

which is conceptually similar to Solr’s standard DisMax (Disjunction Max) parser
configured with a tie parameter of 0.0. When a term is searched across multiple
fields (like name, category, and description), this parser does not sum the scores
from all fields. Instead, it takes the maximum score from any single matching field.
This ensures that relevance is driven by the best possible match, aligning perfectly
with the e-commerce principle that a product is relevant if it matches well in one
key area, not if it matches poorly in many.

9.2 Semantic Vector Retrieval

This section introduces the paradigm shift from matching text to understanding
meaning. It covers the end-to-end lifecycle of vector search, from the theoretical
concept of embeddings to the practical engineering challenges of deploying it at scale.

9.2.1 The Power of Embeddings

Vector search, also known as semantic or dense retrieval, directly addresses the vocab-
ulary mismatch problem by operating on the meaning of words and phrases rather
than their literal text. This paradigm is powered by vector embeddings—dense
numerical representations of data generated by deep learning models. These models,
often based on Transformer architectures like BERT, are trained on vast amounts of
text and learn to map words, sentences, or entire documents to a high-dimensional
vector space. In this space, the distance and direction between vectors correspond to
semantic relationships.

For example, the vectors for ”couch” and ”sofa” would be very close together, while
the vector for ”laptop” would be distant. This property allows the system to bridge
the vocabulary gap, retrieving relevant items even when they do not contain the
exact keywords from the query. A key advantage of this approach is its ability to
handle multimodality. By using models that can process different types of data, a
system can create a unified embedding space where text and images coexist. This
enables powerful use cases like visual search, where a user can upload an image

168

9 Candidate Retrieval Architectures
9.2 Semantic Vector Retrieval

9.2.3 The Bi-Encoder: Architecture for Retrieval

of a product, and the system retrieves visually similar items from the catalog by
finding the nearest neighbors to the image’s vector embedding.

9.2.2 The Vector Search Pipeline

The operational process of vector search involves two main stages that mirror the
lifecycle of a traditional search system but operate on vectors instead of text.

The first stage is Embedding Generation (Indexing). During the offline indexing
phase, every product in the catalog is passed through a pre-trained embedding model.
The model outputs a high-dimensional vector (an array of numbers, often with
hundreds of dimensions) for each product. This vector is a compressed, numerical
representation of the product’s semantic essence. These vectors are then stored in a
specialized database known as a vector database, which is optimized for the unique
challenges of storing and querying high-dimensional data.

The second stage is Similarity Search (Querying). At query time, the user’s
search query is passed through the same embedding model to generate a query vector
in the same high-dimensional space. The system then searches the vector database
to find the product vectors that are ”closest” to the query vector. This ”closeness”
is a mathematical measure of semantic similarity, typically calculated using a metric
like cosine similarity or Euclidean distance. The products corresponding to the
nearest vectors are returned as the search results.

The adoption of this pipeline fundamentally couples the search infrastructure to the
MLOps lifecycle. The performance of the retrieval system is no longer just a function
of indexing configuration but is now critically dependent on the quality and freshness
of the underlying embedding models. These models need to be trained, evaluated,
and periodically retrained on new data to stay relevant and avoid model drift as
language and product associations evolve. This creates a new set of operational
burdens, including model versioning, automated retraining pipelines, and A/B testing
frameworks not just for ranking algorithms, but for the embedding models at the
core of retrieval.

169

9 Candidate Retrieval Architectures
9.2 Semantic Vector Retrieval

9.2.3 The Bi-Encoder: Architecture for Retrieval

9.2.3 The Bi-Encoder: Architecture for Retrieval

The model architecture used to generate the embeddings for this pipeline is almost
always a bi-encoder. This design is fundamental to the ”decoupled” nature of the
vector search pipeline and is a key concept that contrasts with the models used later
in the ranking stage.

The bi-encoder architecture consists of two independent neural networks, or ”towers”,
a Query (or User) Tower and a Candidate (or Item) Tower.

The Query Tower (or User Tower) is a component that takes input features
related to the user and their context, such as the search query text, user ID, historical
browsing behavior, and demographic information and processes these features to
produce a single, dense vector representation: the query embedding. This model
processes the user’s query and outputs a query vector.

The Candidate Tower (or Item Tower) takes as input features related to a
product, such as its ID, title, category, and image features and processes these
features to produce a candidate embedding of the same dimension. This model
processes a product’s information (title, description, etc.) and outputs a document
vector.

During training, the model learns to produce query and item embeddings that are
close to each other (mathematically speaking, having a high dot product similarity) for
pairs that resulted in a positive user interaction. The true power of this architecture
lies in its decoupled nature at serving time. Because the candidate tower only
depends on item features, its embeddings for the entire product catalog can be
pre-computed offline in a batch job and loaded into an ANN index. When a user
performs a search, only the lightweight query tower needs to be executed in real-time
to generate a query embedding. This embedding is then used to perform a fast
ANN search against the pre-computed item index to retrieve the top candidates.
This architecture is immensely scalable and also helps mitigate the item cold-start
problem, as it can generate an embedding for a new product based on its content
features alone, without requiring any interaction history.

170

9 Candidate Retrieval Architectures
9.2 Semantic Vector Retrieval
9.2.4 Scaling with ANN Search

This architecture is extremely fast and scalable. The computational cost at query
time is minimal, making it the only viable semantic architecture for the retrieval
stage, which must sift through millions of items in milliseconds.

Because the query and document are processed in isolation, the model cannot capture
fine-grained, token-level interactions between them. It relies on a ”fuzzy” or ”blurry”
representation of the concepts in the vector space, which can sometimes miss critical
nuances.

9.2.4 Scaling with ANN Search

While conceptually powerful, a naive implementation of vector search faces a sig-
nificant performance bottleneck. Performing an exact nearest neighbor search (a
k-NN search) requires calculating the distance between the query vector and every
single vector in the database. For a catalog of millions of products and vectors with
hundreds of dimensions, this ”brute-force” approach is computationally prohibitive
and cannot meet the low-latency requirements of a real-time search application.
However, not all e-commerce catalogs are huge. For catalogs whose size is small it
can be a good option.

The solution to this scalability problem is Approximate Nearest Neighbor
(ANN) search. ANN algorithms are designed to find ”very close” neighbors quickly,
without guaranteeing that they are the absolute closest. They trade a small, often
imperceptible, amount of accuracy for a massive improvement in search speed,
typically reducing the search complexity from linear 𝑂(𝑁) to logarithmic 𝑂(𝑙𝑜𝑔𝑁).

Several families of ANN algorithms exist, including tree-based, hashing-based, and
clustering-based methods. Among the most popular and high-performing is Hier-
archical Navigable Small World (HNSW), a graph-based algorithm. HNSW
organizes the vectors into a multi-layered graph structure. During search, it uses
long-range links in the upper layers to quickly navigate across the vector space and
short-range links in the lower layers to hone in on the precise neighborhood of the
query vector. The implementation of ANN search is typically handled by specialized
vector databases such as Weaviate, Qdrant, or Pinecone, which abstract away the

171

9 Candidate Retrieval Architectures
9.2 Semantic Vector Retrieval

9.2.5 The Architectural Anchor: Specialized Vector DB vs. Integrated Engine

complexity of the underlying algorithms and are optimized for storing and efficiently
querying billions of vectors.

This trade-off between performance and accuracy, and the rise of specialized vector
databases, naturally leads to a critical architectural question: which system should
serve as the ”anchor” for a modern hybrid search system?

9.2.5 The Architectural Anchor: Specialized Vector DB vs. Integrated
Engine

A common dilemma for architects is whether to build a hybrid system around a
purpose-built semantic engine (like Milvus, Weaviate, or Pinecone) or a purpose-built
lexical engine (like Apache Solr or Elasticsearch). For many e-commerce applications,
the answer is increasingly the latter.

This is because modern ”lexical engines” are no longer ”lexical-only.” If we take
Apache Solr and Elasticsearch, their shared foundation, Apache Lucene, has natively
implemented the same high-performance HNSW algorithm for vector search, the
algorithm used by most specialized databases. Both Solr and Elasticsearch now treat
vectors as a native data type (e.g., dense vector in Elasticsearch), allowing them to
perform efficient k-NN search.

The single biggest advantage of this integrated approach is for hybrid search with
filtering, which is a non-negotiable requirement for e-commerce.

Specialized Vector Databases are ”vector-first.” Their architecture is optimized
for one primary task: storing and retrieving billions of vectors at maximum speed.
Features like metadata filtering are often secondary and can be less performant,
especially for ”pre-filtering” (i.e., filtering before the vector search).

Lucene-based Engines (Solr/ES), by contrast, have spent decades mastering
complex, high-performance filtering. They can execute a multifaceted query (e.g.,
in stock:true AND category:”Laptops” AND price: [500 TO 1000]) to instantly
isolate a small subset of documents, and then run the high-performance HNSW
search only on that pre-filtered set.

172

This is a demonstration PDF.
The full book is available for purchase:

https://testmysearch.com/my-books.html

10 The Ranking Engine

Following the candidate retrieval stage, which narrows down a massive catalog to
a few hundred promising items, the ranking engine performs the final and most
crucial step: sorting these candidates to produce the ordered list that the user
will see. This stage is where precision becomes paramount. While the retrieval
architecture prioritizes recall—ensuring no potentially relevant items are missed—the
ranking engine optimizes for precision at the top of the list, where user attention
and commercial opportunities are most concentrated. Getting the first few results
exactly right is the primary objective.

As it was already mentioned earlier in the overview section, the ranking is intertwined
with the retrieval. In classic search engines, the retrieval process itself is a ranking
operation. While iterating over inverted index posting lists, the engine calculates a
base relevance score (like BM25) and uses a priority queue to keep only the top-K
highest-scoring documents. This means the ”candidate set” delivered by the retrieval
stage is not an unordered blob of IDs; it is already a ranked list based on a first-pass
scoring function. The role of the ”Ranking Engine,” therefore, is more accurately
described as a Re-Ranking Engine. Its job is to take this already-ranked list and
apply a second, more sophisticated and computationally expensive, layer of scoring
to produce the final, business-aware order.

However, this part of the book explores the theory and practice of modern ranking in
general, charting the technological and philosophical evolution of the ranking engine,
where re-ranking is just a part. We’ll begin with the foundational approaches of static,
human-curated ranking logic, where domain expertise is manually encoded into the
system. Then we’ll continue with the dominant modern paradigm: sophisticated,
data-driven Learning to Rank (LTR) models that treat ranking as a supervised
machine learning problem.

10 The Ranking Engine
10.1 Baseline Heuristic Ranking
10.1.1 Manual Heuristic Tuning

10.1 Baseline Heuristic Ranking

Before delving into the complexities of machine-learned ranking, it is essential to
understand the foundational methods from which they evolved. Heuristic and rule-
based systems represent the baseline for ranking, providing the necessary context
and motivation for the subsequent shift to more advanced, data-driven paradigms.

For an engineer, understanding these systems is not merely a historical exercise;
many modern platforms still contain remnants of this logic, and these manual systems
provide an invaluable baseline for measuring the lift of more sophisticated models.

This section details the characteristics, implementation patterns, and inherent limi-
tations of manual ranking systems, establishing a clear, problem-driven narrative
that justifies the adoption of the Learning to Rank (LTR) framework.

10.1.1 Manual Heuristic Tuning

Heuristic ranking is a method of creating a scoring function through a manually
weighted combination of various signals. In computer science, a heuristic is a practical,
problem-solving technique or ”rule of thumb” designed to produce a ”good enough”
solution quickly, often by trading absolute optimality for speed and simplicity. In
the context of search ranking, this translates to a function that combines several
relevance-indicating features into a single score, which is then used to sort the
products.

A common implementation is a simple linear combination of signals. For instance,
after the retrieval stage has provided a set of candidate products, a heuristic scoring
function might look like this:

In this formula:

𝐹𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒 = (𝑤1 · 𝐵𝑀25𝑆𝑐𝑜𝑟𝑒) + (𝑤2 · 𝑃𝑃) + (𝑤3 · 𝐴𝑅)

• BM25Score is the lexical relevance score from the retrieval engine.

186

10 The Ranking Engine
10.1 Baseline Heuristic Ranking

10.1.2 The Business Rules Engine

• 𝑃𝑃 is Product Popularity, could be a metric like the number of units sold in
the last 30 days.

• 𝐴𝑉 is Average Rating, the product’s average customer review score.

and

• 𝑤1, 𝑤2, and 𝑤3 are the weights assigned to each signal.

The core engineering challenge of this approach lies in the manual, time-consuming,
and intuition-driven process of tuning these weights. This is often an art rather than
a science, relying on the domain expertise of search engineers and merchandisers
who conduct trial-and-error experiments to find a combination that ”feels” right
or performs well on a small set of benchmark queries. This process lacks a system-
atic, data-driven methodology, making it difficult to scale, maintain, and prove its
optimality.

While seemingly primitive, these heuristic models are more than just a precursor
to machine learning; they represent the explicit, codified domain knowledge of the
business. The weights chosen by engineers are a direct mathematical representation
of the company’s beliefs about what drives relevance and sales—for example, a
particular set of weights might encode the belief that ”a high customer rating is twice
as important as a perfect text match for this product category.” This perspective
is crucial because it reframes these heuristics not as something to be immediately
discarded, but as a valuable starting point.

For example, the weights for the components in the formula above could be the
output of the machine learning model trained to differenciate queries as specific or
vague.

Thus, the signals used in the heuristic function (BM25 score, popularity, etc.) become
the initial feature set for a more advanced Learning to Rank model. The transition
to machine learning is therefore not a complete replacement but an evolution; the
ML model’s task is to learn the optimal, context-dependent weights that engineers
were attempting to find manually, while also discovering the complex, non-linear
relationships a simple weighted sum could never capture.

187

10 The Ranking Engine
10.1 Baseline Heuristic Ranking

10.1.3 Limitations of Static Rules

10.1.2 The Business Rules Engine

A more structured and powerful system for applying explicit, deterministic logic to
the ranking process is the Business Rules Engine (BRE). A BRE is a software system
that manages and executes business rules in a runtime environment. In e-commerce
search, it serves as the primary tool for merchandisers and business stakeholders to
directly influence search results and implement strategic initiatives without requiring
direct code changes by the engineering team.

The BRE operates by applying a set of conditional (IF-THEN) rules to the candidate
products, typically by boosting or demoting their scores. Concrete examples of such
rules in an e-commerce context are plentiful:

• Promotional Boosts. IF a product’s brand is ”Nike” AND it is part of the
”SummerSale” campaign, THEN add 100 points to its relevance score.

• Inventory Management. IF a product’s stock level is below 10 units, THEN
multiply its relevance score by 0.5 to reduce its visibility and manage customer
expectations.

• Newness Boosts. IF a product was added to the catalog within the last 7
days, THEN multiply its score by 1.2 to ensure new arrivals get initial visibility.

• Strategic Demotions. IF a product is from a third-party seller with an
average rating below 4.0 stars, THEN cap its final rank at position 20, ensuring
it cannot appear at the very top of the results.

Modern e-commerce platforms often leverage low-code or no-code BRE interfaces
that empower non-technical users, such as merchandisers, to create, test, and deploy
these rules through a graphical user interface. This decouples business logic from the
core search algorithm, reducing the operational burden on engineering teams and
allowing the business to be more agile in its response to market conditions.

188

10 The Ranking Engine
10.1 Baseline Heuristic Ranking

10.1.3 Limitations of Static Rules

10.1.3 Limitations of Static Rules

While heuristic and rule-based systems provide a necessary degree of control and
are simple to understand, they suffer from fundamental limitations that prevent
them from scaling and adapting in a dynamic e-commerce environment. These
weaknesses create a compelling case for adopting a machine-learning-based approach.
The argument can be structured around three core engineering and business pain
points.

First, scalability and maintenance become significant challenges as the business
grows. As more rules are added to handle new promotions, product lines, and
edge cases, the system becomes exponentially more complex and brittle. There is a
high risk of rule conflicts—where one rule boosts a product while another demotes
it—leading to unpredictable ranking behavior that is difficult to debug. The system
can devolve into a ”house of cards,” where changing one rule has unintended and
damaging consequences elsewhere. Managing a large number of rules becomes a
complex and challenging task, hindering the system’s ability to scale and be updated
reliably.

Second, these systems lack adaptability. Rule-based systems are static; they are
based on a fixed set of pre-programmed logic and cannot learn from experience
or adapt to new situations. They are incapable of responding to changing user
preferences, emerging search trends, or the long tail of novel queries that have never
been seen before. While traditional algorithms rely on these static rules, AI and
machine learning models can learn directly from user interactions to dynamically
adjust rankings in real-time, ensuring that the most relevant and popular products
consistently rank higher.

Third, and perhaps most critically, a rule-based system is inherently a one-size-
fits-all solution that lacks the capacity for personalization. It cannot tailor
the ranking of products to individual users based on their unique browsing history,
brand affinities, or price sensitivity. This represents a massive missed commercial
opportunity, as personalization is a key driver of customer engagement and revenue
in modern e-commerce.

189

10 The Ranking Engine
10.2 The Learning to Rank Paradigm
10.2.1 Supervised Learning for Ranks

These limitations create a negative feedback loop for both the engineering and
business teams. As the business grows, merchandisers request more rules to handle
an increasing number of scenarios. This increases the system’s complexity and
brittleness, which in turn slows down the engineering team’s development velocity
and makes it harder to innovate. This operational friction often becomes the primary
business driver for adopting a more scalable and automated LTR approach. The
problem is not just that the search results are suboptimal; it is that the very process
of managing the ranking logic becomes an organizational bottleneck that stifles
growth and agility. The move to LTR is therefore not purely a technical decision
to improve relevance metrics, but a strategic one aimed at breaking this cycle of
increasing complexity and decreasing agility. It is a fundamental shift from a system
that requires constant human intervention to one that learns, adapts, and improves
autonomously.

10.2 The Learning to Rank Paradigm

The inherent limitations of manual ranking systems necessitate a more powerful,
scalable, and adaptive approach. Learning to Rank (LTR) represents this paradigm
shift, moving from hand-crafted rules and weights to sophisticated models that
automatically learn how to rank from data. This chapter provides the essential
theoretical foundation for LTR, deconstructing its core components and exploring
the fundamental ways the learning problem can be framed. This conceptual toolkit
is crucial for any engineer tasked with building or maintaining a modern, data-driven
ranking engine.

10.2.1 Supervised Learning for Ranks

Learning to Rank is a class of supervised machine learning techniques specifically
designed to solve ranking problems. The central idea is to learn a scoring function,
often denoted as , directly from training data rather than having engineers manually
define it through heuristics and rules. A supervised LTR system is composed of
three fundamental components: models, features and judgements (or labels).

190

10 The Ranking Engine
10.2 The Learning to Rank Paradigm

10.2.2 Feature Engineering for Ranking

Features (also known as signals) are the inputs to the model. A feature is a numerical
value that describes the query, the product (document), or, most importantly, the
relationship between them. A rich and diverse feature set is the foundation of any
powerful LTR model.

Judgments (or labels) are the ground-truth relevance labels that the model learns
to predict. In traditional web search, these judgments were often obtained through
expensive manual annotation by human raters. In modern e-commerce, however,
judgments are typically derived implicitly and at a massive scale from user engage-
ment data. This behavioral data provides a natural, graded relevance scale that
reflects a user’s perceived value of a product for their query.

For example:

• A purchase is the strongest positive signal (e.g., label = 4).

• An add-to-cart is a strong positive signal (e.g., label = 3).

• A click is a weaker positive signal (e.g., label = 2).

• An impression with no click can be treated as a negative signal (e.g., label
= 1 or 0).

Models are the machine learning algorithms that learn the scoring function 𝑓 . The
model takes the feature vector for a given query-product pair and outputs a relevance
score. The final ranked list presented to the user is produced by sorting the candidate
products in descending order of these predicted scores.

This framework transforms the ranking problem from a manual tuning exercise into
a standard, data-driven machine learning task, enabling a more systematic, scalable,
and ultimately more effective approach to relevance.

10.2.2 Feature Engineering for Ranking

The performance of any LTR model is fundamentally constrained by the quality
and comprehensiveness of its feature set. A robust e-commerce LTR system must

191

10 The Ranking Engine
10.2 The Learning to Rank Paradigm

10.2.2 Feature Engineering for Ranking

incorporate signals from multiple sources to form a holistic view of relevance. For an
engineer, designing this feature set is one of the most critical aspects of building the
system.

The features can be categorized as follows.

Query Features describe the query itself, providing context about the user’s intent.
Examples include the number of terms in the query, the presence of stop words, the
predicted query category or intent (e.g., from the Query Understanding service we
mentioned earlier), and whether the query contains a brand name or a question.

Product (Document) Features describe the candidate product, independent of
the query. They often represent the product’s intrinsic quality or business value.
Examples include price, brand, sales rank (a measure of popularity), number of
customer reviews, average star rating, product age (freshness), availability (in-stock
status), and profit margin.

Query-Product Interaction Features are the most critical features, as they
capture the direct relationship between the query and the product.

The Query-Product Interaction Features can be subdivided into:

• Lexical Features. These measure the textual match, such as the BM25 score,
TF-IDF scores, the number of query terms matching in the product title versus
the description, and other text-based similarity metrics.

• Semantic Features. These capture the meaning-based match, most commonly
the cosine similarity between the query embedding and the product embedding,
derived from the deep learning models.

• Behavioral (Popularity) Features. These features are derived from ag-
gregated user interactions with a product and act as a powerful signal of its
overall quality and desirability. Examples include the historical click-through
rate (CTR) of the product, its conversion rate, its add-to-cart rate, and even
the CTR for the specific query-product pair. It is important to note that these
features can create a feedback loop where popular items become more popular

192

10 The Ranking Engine
10.2 The Learning to Rank Paradigm

10.2.3 Real-time vs. Batch

simply because they are ranked higher; this is known as popularity bias, a
challenge that will be addressed in a later chapter.

• Personalization Features. These features are designed to tailor the ranking
to the specific user performing the search. They are created by aggregating a
user’s historical interactions with different product attributes, such as brands,
categories, or price points. Examples include the number of times the user
has clicked on or purchased from this product’s brand, the user’s affinity for
a certain category, the user’s price sensitivity (e.g., the average price of their
past purchases), and the semantic similarity between the current product and
products the user has previously bought.

A well-designed feature set is not merely a list of variables; it functions as the archi-
tectural integration point for the entire search stack. The features are the mechanism
by which signals from every other part of the system—the Query Understanding
service, the multi-source Retrieval engine, the User Profile service, the Inventory
service—are brought together into a unified representation. The LTR model’s job
is to learn the optimal weights and complex interactions between these disparate
signals. This means that the process of feature engineering forces the engineer to
think holistically about the system’s data flows. Adding a new feature is rarely just a
model-level change; it often requires creating new data pipelines or real-time service
integrations. The LTR feature store thus becomes a critical piece of infrastructure
that acts as a central data bus, and the feature engineering process itself becomes a
primary driver for cross-team collaboration between the search, data engineering,
and core platform services teams.

10.2.3 Real-time vs. Batch

The feature set described is the fuel for the LTR model, but building a high-
performance system to deliver this fuel at query time is a major engineering challenge.
Features are not all created equal; they have different update frequencies, and
the architecture must reflect this. This leads to a bifurcated system for feature
computation and serving, typically revolving around a Feature Store.

193

10 The Ranking Engine
10.2 The Learning to Rank Paradigm

10.2.4 Pointwise, Pairwise, and Listwise LTRs

• Batch Features (Precomputed). These are features that describe the
product (document) and its aggregated, long-term performance. They are com-
putationally expensive and do not change on a per-query basis. Examples are
AverageStarRating, SalesRank (like 30-day popularity), ProductEmbedding,
historical CTR/CVR. These features are precomputed offline in a batch data
pipeline (e.g., using Spark or a data warehouse). They are then loaded into a
low-latency key-value store (like Redis, DynamoDB, or Vespa’s attribute fields)
where they can be rapidly fetched using the product id as the key.

• Real-time Features (Query-Time). These features describe the context
of the search: the user, the query, and the immediate session. They can-
not be precomputed. Examples are QueryEmbedding, UserBrandAffinity,
SessionClickHistory, TimeOfDay, DeviceType. These features are either
generated on-the-fly by the Query Understanding service or fetched from a
real-time user profile service.

If such approach is in use, the ranking engine’s first task, before even calling the
LTR model, is to orchestrate this feature retrieval. It fans out requests to the batch
feature store (for all candidate products) and the real-time context services, then
joins these two sets of features into the final feature vectors that will be fed to the
model. This data-fetching step is often a primary latency bottleneck and must be
highly optimized.

10.2.4 Pointwise, Pairwise, and Listwise LTRs

LTR algorithms are typically categorized into three main approaches based on how
they formulate the learning problem and what their loss function considers: a single
document, a pair of documents, or an entire list of documents. Understanding the
trade-offs between these approaches is a fundamental aspect of LTR system design
for any engineer.

Pointwise Approach is the simplest approach, treating each query-document pair
as an independent training instance. The problem is framed as a standard regression
task (predicting the numerical relevance score, e.g., 0-4) or a classification/ordinal

194

This is a demonstration PDF.
The full book is available for purchase:

https://testmysearch.com/my-books.html

11 Search Suggestions

The search suggestion system, often referred to as autocomplete or typeahead,
represents the most critical, proactive stage of the entire search pipeline. It is
far more than a simple user experience convenience for reducing keystrokes; it
is the system’s first and most influential opportunity to understand user intent,
guide product discovery, and proactively prevent the ”zero-result” outcomes that
are a primary cause of user frustration and site abandonment. A well-architected
suggestion system is a powerful data collection and user guidance mechanism that
directly impacts conversion rates and customer satisfaction.

While the terms ”autocomplete”, ”typeahead”, ”search suggestions” are often used
interchangeably, it is useful to establish a clear taxonomy:

• Autocompletion. A feature that offers to complete a word or phrase that
is only partially typed. It typically displays the single most likely completion
”underneath” the current entry (e.g., in a lighter color), which the user can
accept with a Tab or arrow key. It is best used for selecting from a finite list
where an item can be reliably predicted after 1-3 characters.

• Autosuggestion (or Live Search Suggestions). A feature that displays
a list of potential queries, products, or categories in a dropdown as the user
types. This is the primary focus of this chapter and encourages exploratory
search rather than simple completion.

• Autocorrection. A mechanism that suggests corrections for likely misspellings
or alternative phrasings (e.g., ”Did you mean...”).

Although modern systems blend these concepts, thinking of them as distinct user-
assistance patterns helps in designing a robust solution.

11 Search Suggestions
11.1 The Strategic Role of Suggestions

In general, search suggestions are essentially recommendations from an engine. The
inputs for this engine include what the user has already typed into the search
bar, information stored in the index, data from the user’s profile, and the context
defined by the user’s actions within the session. The main point is that, overall, any
suggestions are fundamentally part of the recommender algorithms domain, ranging
from simple statistical models to those built on machine learning.

This domain also includes the functionality often badged as ”Did you mean...”, which
suggests corrections for likely misspellings or alternative, more popular phrasings.
While ”Did you mean...” is classically implemented as a post-query correction mech-
anism on the main search results page, its underlying logic is increasingly integrated
directly into the pre-query suggestion system. By identifying and correcting potential
spelling errors (e.g., offering ”laptop” when the user types ”loptp”), the suggestion
system can prevent a failed search before it ever happens, directly addressing the
”zero-result” problem.

When the user’s original query (e.g., ”loptp”) is likely to return zero results, the
system has two primary options for handling the autocorrected suggestion (e.g.,
”laptop”):

• Automatic Correction. Automatically execute the search for the corrected
query (”laptop”) and display those results, along with a message stating,
”Showing results for ’laptop’. Search instead for ’loptp’.” This prevents a
zero-result page but takes control away from the user.

• Suggestive Correction. Display the zero-result page for ”loptp” but promi-
nently feature a ”Did you mean: laptop?” link. This respects the user’s exact
query while providing a clear path forward.

For a pre-query suggestion system, this logic is applied by ranking the corrected
suggestion (”laptop”) higher than the user’s literal (and likely fruitless) typed query.

And, of course, the query suggestions is the solution. A user may get the feedback
immediately about no results for the original query and suggestions what the current
query should be replaced with.

226

11 Search Suggestions
11.1 The Strategic Role of Suggestions

11.1 The Strategic Role of Suggestions

A sophisticated search suggestion system adds strategic value to a platform in several
ways, each building on the last to create a smoother and more effective discovery
experience.

At its simplest, the system makes searching easier. By predicting what a user is
typing, autocomplete reduces the effort of input and helps avoid spelling mistakes that
can derail a search. This basic function is now expected on any modern e-commerce
site.

Beyond just making typing easier, the system also guides users toward the right
queries. It helps them learn the specific language of the domain—for example,
suggesting “brogues” when a user types “men’s dress shoes”—and subtly shows the
range of products available. This educational aspect is particularly useful for users
who aren’t familiar with precise product terms.

Another important role is preventing dead-end searches. By steering users toward
queries that are known to return results, the system avoids the frustration of “no
results found” pages. A guided search experience keeps users engaged, while a failed
search can quickly lose their attention.

The suggestion system also provides valuable real-time insights for the business.
Tracking which prefixes users type and which suggestions they select reveals trends in
user intent, popular products, and emerging market patterns. This data can inform
merchandising, inventory management, and marketing strategies.

In terms of the search process, the canonical pipeline consists of Indexing, Retrieval,
and Ranking stages, triggered after a user submits a full query to the search results
page (SERP). The suggestion system, however, works before this main pipeline. As
a user types a prefix, it offers possible full queries. When the user selects one, that
clean, well-formed query is sent to the main search engine, triggering retrieval and
ranking.

In this way, the suggestion system acts as a “human-in-the-loop” query assistant. It
collaborates with the user to build effective queries. The quality of its suggestions

227

11 Search Suggestions
11.2 A Taxonomy of Modern Search Suggestions

11.2.1 Query Suggestions (Keyword-based)

directly impacts the quality of the queries submitted to the main search engine.
Better suggestions produce better queries, which lead to more relevant results and
make ranking easier. For this reason, the suggestion system shouldn’t be seen as
just a minor UI feature—it’s essentially “Stage 0” of the entire search process. Its
design and intelligence set the foundation for everything that comes after.

11.2 A Taxonomy of Modern Search Suggestions

A state-of-the-art autocomplete dropdown is not a simple list of text strings; it is
a rich, multi-faceted discovery interface. To engineer such a system, it is essential
to deconstruct it into its constituent parts, understanding the different types of
suggestions and the specific user intents they serve.

11.2.1 Query Suggestions (Keyword-based)

Query suggestions are text-based recommendations that either complete the user’s
partial query or offer related avenues of exploration. They are the most traditional
form of autocomplete and can be further subdivided:

• Standard Completions. These are based on direct prefix matching, com-
pleting the word or phrase the user is currently typing (e.g., ”lap” suggests
”laptop”).

• Related Queries. These are semantically similar queries that may not share
a prefix. For example, after a user has searched for ”sofa,” a subsequent search
might suggest ”couch” or ”living room furniture.”

228

11 Search Suggestions
11.2 A Taxonomy of Modern Search Suggestions

11.2.2 Product Suggestions (Entity-based)

• Trending Searches. These are popular queries being made by other users in
near real-time. Displaying them provides social proof and can be a powerful
tool for discovery, exposing users to products or trends they may not have been
aware of. For example, a query for ”light” might yield suggestions for ”vanity
light” and ”pendant lights” based on their popularity.

• Search History Suggestions. These are queries based on the user’s past
search activity. They are a powerful personalization tool and can be sourced
in two ways: Personal and Global. The Personal History Queries is what the
current user has made in the past. These are highly relevant but only available
to logged-in or cookied users. The Global History / Popular queries are from
all users. This list can be pre-populated or based on trending searches, but
it requires careful, often manual cleansing. It is crucial to filter this list to
remove typos, nonsensical queries, and any potential personally identifiable
information (PII) that users may have accidentally typed into the search bar.

The above may be applied to a whole query or its part (individual words or last
word or words).

A key challenge with suggestions sourced from Global History is freshness. Popular
queries can become stale, leading to suggestions that return zero results because the
underlying products are no longer in stock or available. The system must have a
mechanism to periodically validate these popular suggestions against the index and
hide or demote any that no longer produce results.

11.2.2 Product Suggestions (Entity-based)

Product suggestions provide direct links to specific product detail pages within
the autocomplete dropdown. This is a critical feature for shortening the purchase
journey, allowing high-intent users to bypass the search results page entirely. To be
effective, these suggestions must be visually rich, including a high-quality product
thumbnail, the full product title, the price, and social proof signals like an average
star rating. For example, a user typing ”iph” should be presented with a suggestion
for the ”iPhone 15 Pro” complete with its image and current price.

229

11 Search Suggestions
11.3 Candidate Generation for Suggestions

This pattern is also often referred to as ”Instant Results.” A common enhancement
for this feature is to include an ”Add to Cart” button directly within the suggestion
snippet, further shortening the purchase journey for high-intent users.

11.2.3 Category & Brand Suggestions (Navigational)

These suggestions provide direct links that navigate the user to a category listing
page or a brand-specific landing page. They cater to users with a broader, more
exploratory intent who are not yet ready to select a single product but wish to browse
a collection. For instance, a user typing ”shoes” could be offered a navigational
suggestion to the ”Men’s Running Shoes” category.

11.2.4 Informational Suggestions (Content-based)

A significant portion of user searches on e-commerce sites—over a third by some
estimates—are not transactional but informational. Users search for return policies,
shipping information, buying guides, and help articles. Informational suggestions
acknowledge and serve this intent by providing direct links to relevant non-product
content. For example, a user typing ”return” should be immediately presented with
a suggestion for the ”Return Policy” page. Providing these suggestions builds user
trust and prevents them from leaving the site to find answers elsewhere.

11.2.5 Visual Suggestions

Visuals are not a distinct type of suggestion but rather a crucial design principle that
should permeate the entire autocomplete experience. The use of product thumbnails,
brand logos, and category icons transforms the suggestion dropdown from a simple
list of text into a scannable, engaging ”micro-SERP”. Visuals allow users to process
information and make decisions much more quickly and confidently, which has
been shown to dramatically increase click-through rates on suggestions. The highly
effective autocomplete interfaces of major retailers like Amazon are prime examples
of this principle in action.

230

11 Search Suggestions
11.3 Candidate Generation for Suggestions
11.3.1 Foundational Prefix-Based Retrieval

11.3 Candidate Generation for Suggestions

Generating the initial pool of suggestion candidates is a core engineering challenge
that requires a combination of technologies. A state-of-the-art system follows a clear
evolutionary path, layering modern semantic and generative approaches on top of a
high-performance lexical foundation.

A powerful real-world example of such an orchestrated system is LinkedIn’s typeahead
engine, Cleo1. Instead of relying on a single data structure, Cleo is designed to
federate requests to multiple candidate sources in parallel. These sources can include
traditional inverted indexes (similar to the N-gram approach) as well as graph-based
structures, like an Adjacency List, which maps users to their network connections.

To maintain low latency while querying these complex sources, Cleo employs a
multi-stage filtering mechanism. It first uses its indexes (like the Inverted Index or
Adjacency List) to get a broad set of potential document IDs. It then uses a Bloom
Filter as a fast, in-memory check to discard documents that cannot possibly match all
query terms, before finally consulting a Forward Index to reject any remaining false
positives. This multi-step process allows it to efficiently query massive, heterogeneous
datasets in real-time.

11.3.1 Foundational Prefix-Based Retrieval

The first layer consists of classic, high-performance techniques optimized for lexical
prefix matching. These methods are essential for delivering the instantaneous response
times users expect and remain a core component of any hybrid suggestion system.

• Trie (Prefix Tree). This is the canonical data structure for prefix matching.
A Trie is a tree where each path from the root to a node represents a prefix
shared by all words in the subtree below that node. This structure allows for
lookups in a time complexity proportional to the length of the prefix (𝑂(𝐿)),
making it extremely fast.

1Cleo: the open source technology behind LinkedIn’s typeahead search, Jingwei Wu,
2012, https://engineering.linkedin.com/open-source/cleo-open-source-technology-behind-linkedins-
typeahead-search

231

11 Search Suggestions
11.3 Candidate Generation for Suggestions

11.3.2 Semantic Retrieval for Non-Prefix and Conceptual Suggestions

• Ternary Search Tree (TST). A TST is an evolution of the Trie that is
significantly more memory-efficient. Instead of each node storing an array of
pointers for every character in the alphabet, a TST node stores a character
and only three pointers (less than, equal to, greater than), arranging them
in a structure similar to a binary search tree. This provides the same lookup
speed as a Trie but with substantially lower memory overhead, making it more
practical for large suggestion vocabularies.

• N-gram Indexing. This is an alternative approach commonly used in search
engines like Apache Solr and Elasticsearch. It involves using an index-time
analyzer, such as the EdgeNGramFilterFactory, to break down each suggestion
term into a series of prefixes. For example, the term ”apple” would be indexed
as the tokens ”a”, ”ap”, ”app”, ”appl”, and ”apple”. These tokens are then
stored in a standard inverted index. At query time, the user’s partial query can
be looked up directly in the index, providing extremely fast prefix matching
without the need for a specialized Trie data structure. This is a crucial practical
detail for any team building on top of these popular search engines.

11.3.1.1 Typo-Tolerant Suggestion Retrieval

The lexical methods described above (Tries, N-grams) are optimized for prefix
matching but can be unforgiving of typos within that prefix (e.g., ”iphno”). To
create a truly ”forgiving” autocomplete experience, typo tolerance must be built into
the suggestion retrieval logic itself.

Apache Solr provides a specific lookupImpl for this: the FuzzyLookupFactory.
This implementation extends the standard suggester to add Levenshtein-based fuzzy
matching, allowing a user typing ”iphno” to be suggested ”iphone” in the autocomplete
dropdown.

This configuration provides typo-tolerant suggestions based on the product name
field. However, it comes with a known relevance trade-off: it may not be possible
to strongly boost exact prefix matches over fuzzy corrections, which can sometimes
lead to non-intuitive suggestion ordering. This must be carefully tested against user
expectations.

232

11 Search Suggestions
11.3 Candidate Generation for Suggestions
11.3.3 Generative Suggestions with LLMs

11.3.2 Semantic Retrieval for Non-Prefix and Conceptual Suggestions

Lexical methods are fast but brittle; they fail when users do not type a perfect prefix
or use different terminology than what is in the index. Vector search, or semantic
retrieval, addresses this limitation by finding suggestions based on their meaning,
not just their literal character strings. We mention the details of the vector search
ealier in the book.

The architecture for semantic suggestion retrieval involves a two-stage process:

1. Offline Embedding Generation: All potential suggestion terms—including
popular historical queries, product titles, and category names—are passed
through a sentence-transformer model (such as SBERT or E-5). This model
converts each piece of text into a high-dimensional numerical vector, or ”em-
bedding.” These embeddings are then loaded into a specialized vector database
or an index with vector search capabilities.

2. Real-time Querying: As the user types, their partial query is passed through
the same embedding model to generate a query vector. An Approximate
Nearest Neighbor (ANN) search, typically using a high-performance algorithm
like HNSW (Hierarchical Navigable Small World), is then performed to find
the suggestion vectors in the index that are mathematically closest to the query
vector.

This approach is what enables the system to retrieve semantically similar but lexically
different suggestions, such as suggesting ”sofa” when a user types ”couch”. It is
also critical for handling non-prefix matches, where the user’s query fragment might
appear in the middle of a longer suggestion phrase, a scenario that traditional prefix
trees cannot handle.

11.3.3 Generative Suggestions with LLMs

The most advanced technique for candidate generation involves using an LLM
to proactively generate a rich set of high-quality, context-aware suggestion terms
for each product. This is a powerful method for enriching the suggestion pool,

233

11 Search Suggestions
11.3 Candidate Generation for Suggestions
11.3.3 Generative Suggestions with LLMs

especially for new products that have no search history and therefore no presence in
popularity-based models.

Because using an LLM in real-time for every keystroke is prohibitively slow and
expensive, the state-of-the-art approach is to use an offline ingest pipeline that runs
during the product indexing process. The architecture is as follows:

1. Trigger: When a new product is added to the catalog or an existing one is
updated, an event is generated that triggers the pipeline.

2. Prompt Engineering: A script processor constructs a detailed, well-engineered
prompt for an LLM (e.g., a smaller, efficient model like GPT-4o-mini). This
prompt includes the product’s title, description, and other key attributes, and
instructs the model to generate a list of relevant autocomplete terms, including
synonyms, common use cases, and likely search keywords.

3. Inference: The constructed prompt is sent to an LLM inference endpoint.

4. Processing and Storage: The LLM returns a response, typically a comma-
separated string of suggestions. A processor in the pipeline splits this string
into an array of individual terms. This array is then stored in a dedicated,
optimized suggest field within the product’s document in the search index (e.g.,
a completion field in Elasticsearch).

This architecture effectively ”pre-computes” the LLM’s intelligence, allowing its
rich, semantic output to be served at extremely low latency via traditional retrieval
methods. It automates the creation of a high-quality, diverse set of suggestion terms
that moves beyond simple popularity to capture the true semantic essence of each
product.

These three candidate generation methods—lexical, semantic, and generative—are
not mutually exclusive competitors. They are highly complementary components
of a single, robust system. The offline LLM pipeline generates a rich set of poten-
tial suggestion strings (e.g., ”lightweight laptop for students,” ”Apple notebook,”
”portable computer for college”). These generated strings then become the source
documents for the other two systems. They are indexed into a Trie or an N-gram
field for fast lexical prefix matching, and they are also converted into embeddings

234

This is a demonstration PDF.
The full book is available for purchase:

https://testmysearch.com/my-books.html

12 Facets

Faceted search has evolved from a 1933 library classification concept (”colon classifi-
cation”) into the backbone of modern e-commerce product discovery, with leading
platforms like Amazon, eBay, and Alibaba processing billions of queries daily through
sophisticated distributed architectures that combine inverted indexes, machine learn-
ing, and real-time personalization.

This evolution represents a fundamental shift from rule-based filtering to AI-powered
discovery systems. The core principles of faceted search were first established by
S. R. Ranganathan’s 1933 Colon Classification system, which used a ”PMEST”
formula (Personality, Matter, Energy, Space, Time) to provide multiple independent
dimensions for classification. This idea was later translated to digital interfaces in
the 1990s through innovations like Ben Shneiderman’s dynamic queries and Marti
Hearst’s Flamenco project at UC Berkeley. These early systems demonstrated
that faceted browsing could reduce user effort by 40-60% compared to traditional
hierarchical navigation. The 2009 publication of Daniel Tunkelang’s ”Faceted Search”
book then codified the design principles that remain relevant today.

Modern faceted search must handle massive scale (eBay’s 1 billion items with 20%
daily churn), extreme heterogeneity (fashion items requiring different facets than
electronics), and real-time personalization (adapting facet ordering per user).

The technical challenge spans data structures, distributed systems, machine learning,
and user experience design. Implementation decisions—from choosing between Elas-
ticsearch’s aggregations versus Solr’s pivot faceting to selecting sampling algorithms
for approximate counting—directly impact conversion rates that research shows
improve 100% with effective faceting compared to basic search.

12 Facets
12.2 Attribute-based vs. Needs-based Faceting

12.1 The Impact on the User Journey

A well-architected faceted navigation system is not a peripheral feature but a central
pillar of the e-commerce conversion funnel. Its influence is felt across several key
dimensions of the user experience.

First and foremost, it boosts user confidence. Confronted with thousands of results,
a user can experience ”choice paralysis,” a state of cognitive overload that often
leads to abandonment. Facets mitigate this by deconstructing the product space into
understandable, logical dimensions (e.g., brand, size, color, price). This systematic
exposure of available options allows users to understand the landscape of the catalog,
make informed trade-offs, and feel a sense of control over their search process. This
empowerment builds confidence in their eventual selection, reducing post-purchase
dissonance and increasing overall satisfaction.

Second, it directly enhances product discovery. Many users begin their search with
an incomplete or vague idea of their needs. Facets serve as a discovery tool, exposing
them to relevant product attributes they may not have previously considered. A user
searching for “running shoes” might be presented with a “Running Surface” facet
(e.g., Road, Trail, Track), helping them refine their intent and discover products
better suited to their activities. This guided discovery not only improves the quality
of the match but can also increase the average order value by revealing a wider, more
relevant range of options.

Finally, and perhaps most critically from a retention perspective, a robust facet system
helps prevent ”zero-result” scenarios. A keyword search is a high-risk interaction; a
misspelling or an overly specific query can easily lead to a ”No Results Found” page,
a primary driver of user frustration and site abandonment. Faceted navigation, by
contrast, provides a structured and guided path that almost always leads to a tangible
set of products. Even if a specific combination of filters yields no results, the interface
can intelligently handle this state by graying out impossible options, ensuring the
user is never led to a dead end. This fail-safe nature of guided navigation keeps users
engaged on the site, continuously providing pathways for further exploration.

248

12 Facets
12.2 Attribute-based vs. Needs-based Faceting

12.2 Attribute-based vs. Needs-based Faceting

To design an effective facet strategy, it is essential to understand a fundamental
distinction in how facets can be conceptualized. This dichotomy informs everything
from data modeling to the future of search interfaces.

Attribute-based Faceting is the traditional and most common approach. In this
model, facets are a direct, one-to-one mapping of the structured attributes stored
in the product catalog. A facet for ”Brand” exists because there is a brand field
in the product data. A facet for ”Color” corresponds to a color attribute. This
approach is straightforward to implement, assuming the underlying product data
is clean and well-structured. The vast majority of e-commerce sites today employ
attribute-based faceting, and it forms the basis of most best-practice guides. Its
effectiveness is entirely contingent on the quality of the product data; inconsistent or
sparse attributes will inevitably lead to a confusing and incomplete facet experience
for the user.

Needs-based Faceting represents a more advanced, user-centric paradigm. Instead
of reflecting the product’s literal attributes, these facets represent the user’s needs,
intended use cases, or the problem the product solves. For a ”laptops” category,
attribute-based facets might be ”RAM,” ”Screen Size,” and ”Processor.” Needs-
based facets, however, might be ”Good for Gaming,” ”Lightweight for Travel,” or
”Best for Students.” These facets do not typically exist as simple fields in a product
database. They are conceptual, interpretive layers that must be derived, often
through a combination of manual merchandising and, increasingly, advanced AI
techniques. This approach requires a deeper understanding of the customer and a
more sophisticated data enrichment process, but it speaks the user’s language more
directly and can significantly shorten the path to a confident purchase.

The strategic value of any facet system, whether attribute-based or needs-based, is
directly and inexorably linked to the quality of the underlying data used to generate
it. This establishes a powerful and often-overlooked causal chain: poor product data
leads to poor facets, which in turn creates a poor user experience, resulting in lost
revenue. A user confronted with a ”Color” facet that contains redundant values like
”Blue,” ”navy,” and ”Light Blue” as separate, selectable options will find the tool

249

12 Facets
12.3 A Taxonomy of Modern Faceted Navigation
12.3.1 Deconstructing the Search Results Page

noisy and difficult to use. Similarly, if half the products in a category are missing a
value for a key attribute like ”Material,” the corresponding facet will be incomplete
and misleading. The entire strategic success of guided navigation, therefore, rests
upon solving the upstream, foundational problem of product data quality. This
reality elevates the importance of data governance and justifies investment in the
advanced data enrichment pipelines, including those powered by Large Language
Models, that will be discussed later in this chapter.

12.3 A Taxonomy of Modern Faceted Navigation

A modern search results page is a complex, interactive application, and the faceted
navigation system is one of its most prominent components. To engineer a ro-
bust system, it is essential to deconstruct this interface into its constituent parts,
understanding the role each plays in the user’s journey.

12.3.1 Deconstructing the Search Results Page

The user-facing components of a faceted search system can be broken down into
three primary areas, each serving a distinct purpose in orienting and guiding the
user.

(1) Applied Facets (The ”Breadbox”)

This component, often displayed prominently at the top of the search results or
above the facet list, shows the user’s current filter state. It acts as a ”breadbox”
or ”breadcrumb trail,” listing the currently selected facet values (e.g., ”Category:
Laptops > Brand: Apple > Price: $1000-$1500”). Its function is crucial for user
orientation; it allows users to instantly understand their current location within
the vast product space and provides a simple mechanism—typically an ”x” icon
next to each applied filter—to remove constraints and broaden their search again.
Implementations can feature a dynamic list, where only applied facets are shown, or
a non-dynamic list where all facets are present but selected values are highlighted.

250

12 Facets
12.3 A Taxonomy of Modern Faceted Navigation
12.3.1 Deconstructing the Search Results Page

The dynamic approach is generally preferred as it is cleaner and focuses the user’s
attention only on their active choices.

(1) Advanced Search Constraints

It is important to draw a clear line between true facets and other filtering mechanisms
that often co-exist in the same UI panel. While they may look similar, their technical
origin and purpose are different. True facets are derived from the multi-valued
dimensions of the product data itself. Advanced search constraints, on the other
hand, are typically binary filters or other controls that do not map to a diverse set
of attribute values.

Common examples include:

• ”Search within results”. These apply an additional keyword query on top
of the current result set.

• Toggles. Simple on/off switches like ”In Stock Only,” ”On Sale,” or ”Free
Shipping.”

• Rating Filters While sometimes implemented as a range facet, they can also
be a simpler constraint like ”4 Stars & Up.”

• Date Range Pickers. Used in travel or event-based search, allowing users to
select a ”start” and ”end” date, which translates to a range query on a date
field.

• Geo-Filtering. Allows users to filter results by proximity to their location
(e.g., ”within 25 miles”) or by a specific region, which requires geospatial data
types and queries.

These are more accurately described as ”filters” rather than ”facets.” Recognizing this
distinction is important for both system architecture and for clear communication
within a product development team.

251

12 Facets
12.3 A Taxonomy of Modern Faceted Navigation

12.3.2 Value Selection Paradigms

C. Facet Filters

This is the core of the faceted navigation system: the interactive list of dimensions
and their corresponding values that the user can select to refine their search. Each
facet filter consists of a title (e.g., ”Brand”) and a list of selectable options or values
(e.g., ”Apple,” ”Dell,” ”HP”), often accompanied by a document count indicating how
many products match that value. A fundamental property of any facet is whether it
is configured for single-selection (e.g., using radio buttons, where a user can only
select one category at a time) or multiple-selection (e.g., using checkboxes, allowing
a user to select multiple brands simultaneously).

12.3.2 Value Selection Paradigms

A critical decision in the design of a faceted search interface is how the system
responds when a user interacts with a facet value. This choice defines the interaction
model and has significant implications for user experience and system performance.
There are two primary paradigms.

Drill-Down (Sequential Selection). In the drill-down model, every click on a
facet value triggers an immediate update of the search results and the facet counts.
This is typically handled via an asynchronous JavaScript (AJAX) request to the
backend, which prevents a full page reload and creates a more fluid experience.
The primary advantage of this approach is the instant feedback loop; the user
immediately sees the consequence of their selection. This is excellent for simple,
sequential refinement tasks, such as navigating a category hierarchy. However, it can
feel slow and cumbersome if a user wishes to apply multiple filters from different
facets, as they must wait for the interface to refresh after each individual click.

Parallel Selection (”En Masse”). The parallel selection model allows users to
select multiple facet values across different facets—typically using checkboxes, sliders,
or other controls—without triggering an immediate refresh. The user makes all their
desired selections, and the search results are only updated when they explicitly click a
dedicated ”Apply Filters” or ”Submit” button. This approach is far more efficient for
users constructing complex queries with multiple constraints. The main drawback is
a potential for user confusion; users might not notice the ”Apply” button, especially

252

12 Facets
12.4 The Mechanics of Facet Calculation
12.4.1 Implementing Hierarchical Facets

on long pages where it may be out of view, and wonder why the results are not
updating. This can be mitigated with careful UI design, such as making the ”Apply”
button ”sticky” or having it appear contextually near the last-selected option.

The choice between these paradigms is not mutually exclusive; many of the most
effective systems use a hybrid approach. For example, a category facet might use
a drill-down model (since a user is typically in only one category at a time), while
brand and size facets might use a parallel selection model with checkboxes and an
”Apply” button. The following table summarizes the key trade-offs to consider when
making this architectural decision.

12.4 The Mechanics of Facet Calculation

To deliver the instantaneous response users expect from a faceted navigation system,
search engines employ highly specialized data structures and algorithms. Understand-
ing these underlying mechanics is crucial for architects and engineers aiming to build
a high-performance system. The speed of faceting is not a result of clever query-time
tricks; it is the product of deliberate, strategic decisions made at index-time during
the schema design phase.

Modern search engines like Elasticsearch and Solr achieve this speed by augmenting
the traditional inverted index (which maps terms to documents) with a column-
oriented data structure often called DocValues.

DocValues essentially store a ”forward index” mapping, organizing data by document
ID rather than by term. For a ”color” facet, this structure would store, for each
document ID, the color value(s) it contains. This data is stored on disk in a
compressed, column-stride format that is highly optimized for the aggregations
required by faceting. This allows the engine to retrieve all facet values for millions of
documents without the high cost of ”un-inverting” the inverted index at query time,
trading a slight write-time cost for dramatically faster aggregation performance.

253

12 Facets
12.5 Performance and Scalability

12.5.1 The High-Cardinality Problem

12.4.1 Implementing Hierarchical Facets

A common requirement is for hierarchical facets, most often used for product
categories (e.g., ”Electronics ¿ Computers ¿ Laptops”). Implementing this efficiently
requires a specific data modeling choice at index time, and two primary patterns
exist:

Level-Based Fields (The Redundant Approach):

This method involves indexing a separate field for each level of the hierarchy. The
document for a laptop would contain:

• category lvl 0: ”Electronics”

• category lvl 1: ”Electronics > Computers”

• category lvl 2: ”Electronics > Computers > Laptops”

This redundancy makes it extremely fast to get facet counts for any specific level
(e.g., ”show me all level 1 categories”) but increases the index size.

Path Tokenizer (The Solr Approach):

This alternative stores the full path in a single field (e.g., ”Electronics/ Computers/
Laptops”) and uses a specialized tokenizer (like Solr’s PathHierarchyTokenizer).
This tokenizer splits the path into all its ancestor components (”Electronics”, ”Elec-
tronics/ Computers”, ”Electronics/ Computers/ Laptops”) as tokens in the inverted
index. This approach is more flexible, supports unlimited depth, and uses less disk
space, but can have a higher query-time overhead.

254

12 Facets
12.5 Performance and Scalability

12.5.2 Facet Count Accuracy

12.5 Performance and Scalability

12.5.1 The High-Cardinality Problem

Cardinality refers to the number of unique values in a field. Faceting on a low-
cardinality field like ”Gender” (Male, Female, Unisex) is trivial. Faceting on a
high-cardinality field like seller id or part number in a marketplace with millions of
unique values can be extremely memory-intensive and slow, as the engine must track
counts for every unique value.

Several strategies can mitigate this. The most effective is to reduce cardinality at
the source by not faceting on such fields if possible. If it is necessary, engineers can
explore optimizations like only calculating facets for the most popular brands or
using specialized aggregations designed for high-cardinality data.

Search engines often expose these tradeoffs directly to the engineer. Apache Solr,
for example, provides a facet.method parameter that lets the developer choose the
algorithm:

• enum. This method enumerates all terms in the field first and is best for
low-cardinality fields (e.g., under 100 unique values).

• fc (Field Cache). This method iterates over every document in the result
set and is optimal for high-cardinality fields where there are few values per
document.

• fcs (Per-Segment Faceting). A more modern default that uses the fc logic
but parallelizes the work per-segment in the index.

Choosing the right method requires understanding the data’s cardinality and distri-
bution, demonstrating how performance is a direct result of architectural tradeoffs.

255

12 Facets
12.5 Performance and Scalability

12.5.3 Approximate Facet Counting for Extreme Scale

12.5.2 Facet Count Accuracy

Search engines like Elasticsearch and Solr are distributed systems, meaning an index
is split into multiple shards, often across multiple machines. When a facet request is
made, each shard calculates the top facet values for the documents it holds, and then
a coordinating node merges these partial results. This process can lead to inaccurate
counts. For example, if facet.limit is 10, each shard returns its top 10 brands. A
brand that is #11 on every shard but globally would be in the top 5 might be missed
entirely.

To improve accuracy, engines ”over-request” data from the shards. Solr, for instance,
uses the facet.overrequest.count and facet.overrequest.ratio parameters to ask each
shard for more than the final required number of values, increasing the probability
that the final merged list is accurate.

The issue of facet accuracy occasionally arises in search engines, especially when
the technology is proprietary and developed in-house rather than time-tested. The
author of the book reported a bug related to the calculation of facet counts to one
of the major SaaS search providers (the bug was quickly fixed).

12.5.3 Approximate Facet Counting for Extreme Scale

In systems with billions of items and high query load, even DocValues-based aggre-
gations can become a performance bottleneck. The computational cost of calculating
exact counts for every facet value across millions of documents can be too high.

So if this is your case, don’t expect very accurate numbers from the search engine.
Below is the explanation (it is unlikely you will implement it in your custom solution).

A common solution for the problem is to use approximate counting. Instead of
calculating exact counts, the search engine uses a sampling algorithm (like Hyper-
LogLog++ or a simpler sketch) to produce highly accurate estimates of the counts.
This can be 10-100x faster than exact calculation. The fact that these are estimates,
rather than exact numbers, may create some quirks when using the facet search, but
the probability of this is low.

256

This is a demonstration PDF.
The full book is available for purchase:

https://testmysearch.com/my-books.html

13 Recommenders in E-commerce Search

In the preceding chapters, we have methodically deconstructed the canonical search
pipeline—from query understanding and retrieval to ranking and faceted navigation.
This architecture excels at fulfilling a user’s explicit, articulated intent. However,
modern e-commerce demands more than just precise retrieval. It requires the system
to anticipate needs, guide discovery, and surface relevant items even when the
user’s intent is vague or unstated. This is the domain of recommendation, and its
convergence with search is one of the most significant architectural shifts in modern
product discovery.

Even a regular product category page in eCommerce is most often built on the
same search engine that handles keyword-based search. In fact, a category page is
essentially a set of product recommendations from the given category tailored to
that particular user. The category page—together with the product catalog and user
profile—is essentially the input to the recommendation engine, and the output is the
best-sorted list of products relevant to that category.

As we noted in the preface, the lines between these two domains are deeply intertwined.
This chapter formalizes that idea, moving beyond simply using personalization as
a ranking signal and treating the search experience itself as a powerful, context-
aware recommendation platform. We will explore the strategies, algorithms, and
architectures required to unify these two systems into a single, cohesive discovery
engine that is far more intelligent and commercially effective than the sum of its
parts.

13 Recommenders in E-commerce Search
13.1 The Search-Recommendation Convergence

13.1.2 From Explicit Search to Implicit Discovery

13.1 The Search-Recommendation Convergence

For decades, search and recommendation systems were treated as distinct engineering
disciplines (although, of course, both of them together formed a large field that was
quite different from the others.) Search was the ”pull” mechanism, reacting to a
user’s explicit query. Recommendations were the ”push” mechanism, proactively
surfacing items based on a user’s implicit profile.

This clean separation no longer exists. The modern e-commerce platform recognizes
that this is a false dichotomy; from the user’s perspective, both systems serve a
single goal: product discovery. A vague query, a zero-result page, and even the
search box itself are all opportunities for contextual, intelligent recommendation.
This convergence is not just a theoretical blur; it is a fundamental architectural shift,
recasting the search engine as a real-time, context-aware recommendation platform.

If you take practically any Search SaaS from the top 5, all significant features in
recent years have focused not on search itself, but on “smart recommendations.”
Essentially, the search system takes the recommendation results as input and applies
an additional boost to the recommended items, pushing them closer to the top of
the list or even guaranteeing their inclusion on the first page.

13.1.1 Search as Contextual Recommendation

We must fundamentally reframe the search query itself. In a traditional IR system, the
query is a set of constraints used to filter a document corpus. In a converged system,
the query is the single most valuable piece of context a user provides, acting as
a powerful, real-time feature to steer a recommendation engine. A user searching for
”waterproof hiking boots” is not just filtering the catalog; they are implicitly asking
for a recommendation for their specific, immediate need. This context (the query)
is far more predictive of immediate intent than long-term, historical purchase data.
The architectural implication is that the search query string and its derived semantic
embedding become primary inputs for the recommendation models, allowing the
system to shift from generic ”you might also like” to a highly specific, in-the-moment
”based on what you’re looking for, these are the best options.”

288

13 Recommenders in E-commerce Search
13.2 Recommendation Strategies Within Search Context

13.1.2 From Explicit Search to Implicit Discovery

As we’ve noted previously, user queries exist on a wide ”intent spectrum”. At one
end is the high-precision, navigational query (”Canon EOS 90D”), which is a pure
retrieval task. At the other end is the vague, exploratory query (”something for a
beach vacation”) , which is functionally identical to a recommendation request. The
majority of e-commerce queries fall somewhere in the middle (e.g., ”warm coat”). A
pure, keyword-driven search engine is brittle and fails as intent moves toward the
implicit end of the spectrum. A converged system, however, treats this as a single
problem. It uses the query understanding pipeline to classify the user’s intent and
then dynamically adjusts its strategy, seamlessly blending lexically-retrieved ”search
results” with semantically or behaviorally-retrieved ”recommendations” to provide a
holistic discovery experience.

13.1.3 Pre-emptive Recommendations

The convergence of search and recommendation is most apparent in the ”zero-query”
or ”on-focus” state. The instant a user clicks into the search bar—before they have
typed a single character—they have signaled an intent to find something. A modern
search platform seizes this opportunity. As discussed in the ”Search Suggestions”
chapter, this on-focus event triggers a pre-emptive recommendation engine. Instead
of a blank slate, the user is presented with a useful, personalized set of discovery
paths. These can include globally trending searches , items from their own purchase
history, or AI-driven suggestions based on their current browsing context, effectively
initiating the discovery process without requiring any user effort.

13.2 Recommendation Strategies Within Search Context

To successfully merge search and recommendations, we must move beyond treating
them as separate modules. The key is to develop strategies that use the search context
itself as the primary signal to drive recommendations. This creates a spectrum of

289

13 Recommenders in E-commerce Search
13.2 Recommendation Strategies Within Search Context

13.2.1 In-Session Recommendations

interventions, from real-time query-to-product matching within a single session to
long-term user journey modeling that informs every search.

13.2.1 In-Session Recommendations

The most potent signals for a user’s immediate intent are generated within their
current browsing session. In-session strategies leverage this real-time context—what
the user is typing, clicking, and searching for right now—to provide immediate,
relevant guidance.

Query-to-Query Recommendations (Related Searches) are a foundational
example. Instead of just completing a query (autocomplete) , this strategy uses the
submitted query as context to recommend other, complete queries. These sugges-
tions, often shown as ”Related Searches,” are typically mined from historical query
reformulation logs, identifying patterns where users searched for ”laptops” and then
subsequently searched for ”15 inch laptops” or ”gaming laptops” in the same session.
This guides users toward more specific or alternative discovery paths.

This topic is covered in the chapter on Search Suggestions. As with any user-
generated content, it requires great caution because query recommendations coming
directly from users can be very poor and may negatively impact the reputation of
the online store.

Query-to-Product Recommendations represent the core of the Search - Recom-
mendation Convergence. Here, the user’s query is treated as a direct recommendation
request. As discussed in our section on query understanding, a vague, intent-driven
query like ”healthy snacks for kids” is a poor candidate for pure keyword retrieval.
Instead, it should be routed to a recommendation model that can match the intent
(healthy, kids) to product attributes (low-sugar, organic, high-fiber), returning a set
of products that are recommended for that need.

Null Result Recovery Through Recommendations is the most critical defensive
strategy. As we’ve established, a ”zero result” page is a primary driver of site
abandonment. A converged system must treat this event not as a failure, but as a
trigger for a contextual recommendation. When a query yields no lexical matches,

290

13 Recommenders in E-commerce Search
13.2 Recommendation Strategies Within Search Context

13.2.3 Contextual Injection Points

the system should not return a blank page. Instead, it should automatically pivot,
using the query’s semantic vector to retrieve the closest available products from the
catalog. For example, a search for an un-stocked ”Brand X 12-inch pan” should
trigger a recommendation flow that returns in-stock ”Brand Y 12-inch pan” or
”Brand X 10-inch pan,” effectively recovering a potentially lost sale.

13.2.2 Cross-Session Intelligence

While in-session signals are powerful, a user’s long-term history provides a rich,
stable context that can enhance every search interaction. Cross-session intelligence
involves building and maintaining user profiles to understand preferences, habits,
and temporal patterns that persist across multiple visits.

User Journey Modeling for Search Enhancement is the process of building
a ”deep personalization” profile, as we introduced earlier. By aggregating a user’s
entire history of clicks, purchases, and brand affinities, the system can create a
persistent context. This model then acts as a powerful feature in the ranking engine,
applying a permanent boost to the brands, categories, or price points a user has
shown a consistent preference for, tailoring every search result to their learned tastes.

Temporal Patterns and Seasonal Adjustments add a layer of time-based
intelligence. As we’ve noted, user intent is highly seasonal. A search for ”coat”
in October has a different intent than the same search in April. An intelligent
search-recommendation system must be aware of these temporal patterns. It should
proactively boost ”spring dresses” in March, even if the 6-month historical sales data
still heavily favors ”winter parkas”. This prevents the system from being perpetually
locked in the past and allows it to surface seasonally relevant items.

Purchase Cycle Detection is a specialized form of temporal modeling, most
critical in replenishment-driven verticals like grocery. The system learns the user’s
habitual buying cycle (e.g., ”buys milk every 7 days”). When that user searches for
”milk” around the 7-day mark, the system recognizes this not as a discovery query,
but as a high-confidence replenishment mission. As a result, it applies a massive
boost to the specific milk product the user bought last time, ranking it at #1 to
optimize for efficiency.

291

13 Recommenders in E-commerce Search
13.3 Modern Recommendation Algorithms for Search

13.2.3 Contextual Injection Points

A unified strategy requires a flexible architecture that can inject these recommenda-
tions into the user experience at multiple, high-impact points. The choice of where
to display a recommendation is as important as the recommendation itself.

Blended Results (Organic + Recommended) is the most seamless integration
(but at the same time, it is rather controversial.) In this model, there is no visible
distinction between a ”search result” and a ”recommended item.” The final Search
Engine Results Page (SERP) is a single, unified list. This is achieved by the ranking
engine, which takes candidates from all sources—lexical retrieval, semantic retrieval,
and behavioral recommendation models—and scores them using a unified scoring
framework to produce the final, blended rank.

Recommendation Bands in SERP is a more explicit and common pattern. The
organic, relevance-ranked search results are displayed as the primary list, but the
page is augmented with distinct horizontal carousels or ”bands.” These bands are
clearly labeled (e.g., ”You Might Also Like,” ”Customers Also Viewed,” ”Frequently
Bought Together”) and are powered by recommendation models that use the search
query as their primary context. This approach preserves the integrity of the core
search results while still offering powerful cross-sell and discovery opportunities.

Post-Search Discovery Widgets extend the context of the search beyond the
SERP. When a user clicks a search result and lands on a Product Detail Page (PDP),
the query that got them there is not forgotten. This query context is passed to
the recommendation widgets on the PDP, powering modules like ”Customers Who
Searched For [Your Query] Also Viewed...” This creates a continuous, context-aware
discovery journey, connecting the user’s initial intent on the SERP to their subsequent
product exploration.

13.3 Modern Recommendation Algorithms for Search

To power the integrated strategies discussed previously, the search system must
move beyond traditional keyword retrieval and simple collaborative filtering. Mod-

292

13 Recommenders in E-commerce Search
13.3 Modern Recommendation Algorithms for Search

13.3.1 Two-Tower Neural Networks for Real-time Matching

ern e-commerce relies on sophisticated, deep-learning-based algorithms that can
model complex user behavior, understand sequential intent, and learn from the rich
relationships within the product catalog.

13.3.1 Two-Tower Neural Networks for Real-time Matching

The Two-Tower model, or bi-encoder, has emerged as a foundational architecture for
large-scale candidate retrieval. As we discussed in the context of semantic retrieval,
this design is exceptionally well-suited for real-time matching because it is fast and
scalable. This paradigm was explained earlier, so here’s a quick recap as it’s highly
contextual.

This model consists of two independent neural networks. The User Tower (or Query
Tower) ingests all available user-side context—such as the search query, user ID, and
historical data—and compresses it into a single numerical vector (an embedding).
The Item Tower does the same for the product, ingesting its title, description,
category, brand, and other attributes to create a product embedding. The model is
trained to ensure that for a positive pair (e.g., a query and a product that was clicked),
the resulting User and Item vectors are mathematically close in the embedding space.

The primary advantage of the two-tower architecture is its decoupled nature at
serving time. The Item Tower is run offline over the entire catalog, and the resulting
millions of product embeddings are stored in a high-speed Approximate Nearest
Neighbor (ANN) index. When a live user search occurs, only the lightweight User
Tower needs to be executed in real-time to generate the query vector. This vector
is then used to perform an extremely fast ANN search against the pre-computed
item index to retrieve the top-K candidates. This pattern is the key to providing
”semantic-speed” recommendations for millions of items in milliseconds.

The power of this model lies in its ability to consume a rich variety of features. The
Item Tower can combine text features (product title) with categorical features
(brand, category) and even visual features (an embedding from the product image).
The User Tower is even more complex, combining the query’s text embedding with
features representing the user’s long-term preferences, past purchase IDs, and, most
importantly, their immediate in-session context.

293

13 Recommenders in E-commerce Search
13.3 Modern Recommendation Algorithms for Search

13.3.2 Transformer-based Sequential Models

The two-tower architecture was famously implemented at massive scale by YouTube
in 2016 to power their video recommendations (https://dl.acm.org/doi/10.1145
/2959100.2959190). Their system, with billions of parameters, demonstrated the
model’s ability to compress a user’s complex watch history and context into a dense
vector and match it against pre-computed video vectors in milliseconds.

A more recent (2022) and highly relevant e-commerce example comes from eBay
(https://innovation.ebayinc.com/stories/building-a-deep-learning-bas
ed-retrieval-system-for-personalized-recommendations/). Their engineers
detailed a three-phase evolution:

Phase 1 (Offline): Started with a traditional batch model, where user and item
embeddings were pre-computed.

Phase 2 (Hybrid): Moved to a hybrid model where item embeddings were pre-
computed, but the user tower was executed in real-time to generate a fresh user
vector based on their current session. 3. Phase 3 (Full Real-time): Implemented a
full near-real-time (NRT) architecture using Kafka and Flink to update embeddings
in seconds, not hours.

The production-ready system at eBay, serving 152 million users and 1.5 billion items,
achieved a +6% lift in ”surface rate” (the rate at which recommended items are shown)
in A/B testing. For architects, this journey illustrates a practical, phased approach
to adopting real-time two-tower models, starting simple and adding complexity as
needed.

13.3.2 Transformer-based Sequential Models

While two-tower models are excellent for matching general user preferences, they
often treat a user’s history as an unordered ”bag” of features. Transformer-based
sequential models (like BERT) address this by modeling the order and timing of
user actions, which is critical for predicting immediate intent.

The BERT4Rec model adapts the original BERT language model for recommenda-
tions. It treats a user’s sequence of product interactions (e.g., clicks or purchases)

294

13 Recommenders in E-commerce Search
13.3 Modern Recommendation Algorithms for Search

13.3.2 Transformer-based Sequential Models

as a ”sentence.” During training, it randomly ”masks” an item in the sequence and
forces the model to predict the masked item based on the items that came before and
after it. This process teaches the model deep, complex sequential patterns, allowing
it to understand, for example, that a user buying ”hamburger buns” is highly likely
to be interested in ”ground beef” next.

The core innovation of the Transformer is the self-attention mechanism. In an
e-commerce context, this allows the model to weigh the importance of different items
in a user’s history dynamically. It can learn that for predicting a ”laptop” purchase,
the user’s click on a ”laptop charger” 30 seconds ago is far more important than
their purchase of ”shoes” two weeks ago. It learns to ”pay attention” to the most
relevant parts of the user’s behavioral sequence.

The BERT4Rec model, which was developed at Alibaba, was a direct improvement
on an earlier foundational model called SASRec (Self-Attentive Sequential Recom-
mendation). SASRec was the first to apply the self-attention mechanism to sequential
recommendation and was already a massive improvement over older RNN-based
models, offering 10x faster training times. The problem with SASRec was it was like
trying to understand a sequence by only reading it forward. It only learned from the
past and was blind to any ”future” context.

BERT4Rec’s key innovation was to adopt BERT’s ”Cloze task” (masking) and,
most importantly, use a bidirectional Transformer. This meant that to predict a
masked item, the model could look at both the items that came before and the
items that came after it in the sequence. This ”future” context is unavailable in a
real-time setting, but for training, it allows the model to build a much deeper, more
robust understanding of product relationships. This architectural change proved
highly effective, yielding a +7-11% improvement in key metrics (like HR@10 and
NDCG@10) over the already-strong SASRec baseline in production.

The main paper on the topic is ”BERT4Rec: Sequential Recommendation with
Bidirectional Encoder Representations from Transformer” (Fei Sun et al, Alibaba
Group, https://arxiv.org/abs/1904.06690). The foundational paper for SASRec
is ”Self-Attentive Sequential Recommendation” by Wang-Cheng Kang and Julian
McAuley (https://arxiv.org/abs/1808.09781).

295

13 Recommenders in E-commerce Search
13.3 Modern Recommendation Algorithms for Search

13.3.3 Graph Neural Networks (GNN) for Product Relations

Thus, in e-commerce, not all historical interactions are equal. Temporal Decay is
a critical concept where more recent actions are given more weight. A sequential
model must incorporate this, often by using temporal embeddings that encode the
time elapsed between interactions.

Position Bias is another crucial factor, as users are naturally more likely to click
items at the top of a list. A sophisticated model must be trained to de-bias this
signal, learning to distinguish between a product that is truly relevant and one that
was simply clicked because it was in position #1.

13.3.3 Graph Neural Networks (GNN) for Product Relations

E-commerce catalogs and user interactions are not simple lists; they are massive,
interconnected graphs. Graph Neural Networks (GNNs) are a class of models
designed specifically to learn from these complex relationships, capturing patterns
that sequential or two-tower models might miss.

A common application is to build a graph where products are nodes and an edge
exists between them if they are frequently viewed or purchased together. This creates
a ”customers who bought this also bought...” network — a Product Co-occurrence
Graph. A GNN can ”walk” this graph to find second- and third-order connections,
surfacing non-obvious complementary products that simple co-occurrence counting
would miss.

A more powerful approach is to build a single, massive bipartite graph containing
both user nodes and product nodes. An edge represents an interaction, such as a
click, add-to-cart, or purchase. By training a GNN on this graph, the model learns
embeddings (representations) for both users and products simultaneously, based
on the ”neighborhood” of their interactions. This is highly effective for surfacing
personalized recommendations based on ”community” behavior (e.g., ”users similar
to you, who bought product A, also bought product B”).

This approach may work better for B2B systems where the number of customers
and products is not large, but the number of transactions is high.

296

This is a demonstration PDF.
The full book is available for purchase:

https://testmysearch.com/my-books.html

14 Measurement and Operations

Building a sophisticated search system is only half the battle; operating it effectively
requires a rigorous framework for measurement, experimentation, and maintenance.
This part of the book focuses on the operational disciplines essential for running a
world-class search platform. It covers how to evaluate the performance of the system
both offline and online, how to deploy changes safely and measure their impact
through A/B testing, and how to design the underlying infrastructure for scalability,
reliability, and continuous improvement. These practices form the feedback loops
that transform a static system into one that learns and adapts over time.

14.1 Evaluation Frameworks

To improve a search system, one must first be able to measure it. Evaluation is
the cornerstone of iterative development, providing the quantitative signals needed
to guide algorithmic and design decisions. A comprehensive evaluation strategy
combines offline metrics, which measure relevance quality in a controlled environment,
with online metrics, which measure real-world business impact.

14.1.1 Offline Relevance Metrics

Offline metrics are used to evaluate the quality of a ranking algorithm on a static,
pre-labeled dataset of queries and relevance judgments. They are essential for rapid,
low-cost iteration during model development, allowing engineers to compare different
models and feature sets without needing to run expensive online experiments.

14 Measurement and Operations
14.1 Evaluation Frameworks

14.1.2 Online Business Metrics

The most important offline ranking metrics are position-aware, meaning they give
more weight to relevant documents that appear at the top of the list.

• Normalized Discounted Cumulative Gain (NDCG). This is the industry-
standard metric for evaluating ranking quality, especially when using graded
relevance judgments (e.g., 0=irrelevant, 1=somewhat relevant, 2=highly rele-
vant). It is based on two principles: (1) Highly relevant documents are more
valuable than marginally relevant ones, (2) The value of a relevant document
is discounted logarithmically based on its position in the ranked list; a relevant
document at position 10 is less useful than one at position 1. The Cumulative
Gain (CG) at position p is the sum of the relevance scores of the top p results.
The Discounted Cumulative Gain (DCG) applies a positional penalty: To allow
for fair comparison across queries with different numbers of relevant documents,
the DCG is normalized by the Ideal DCG (IDCG), which is the DCG of the
perfectly ranked list. This results in the NDCG score, which ranges from 0.0
to 1.0.

• Mean Average Precision (MAP). MAP is a popular metric for binary
relevance (relevant/not relevant). For a single query, Average Precision (AP)
is the average of the precision values calculated at the position of each relevant
document in the list. MAP is then the mean of the AP scores across all queries
in the test set. It heavily rewards systems that place relevant documents early
in the ranking.

• Mean Reciprocal Rank (MRR). MRR is a simple and intuitive metric
that is useful when the goal is to find a single correct answer. For each query,
the reciprocal rank is the inverse of the rank of the first relevant document
(e.g., 1/3 if the first relevant item is at position 3). MRR is the average of
these reciprocal ranks across all queries. It is particularly useful for evaluating
navigational queries or question-answering tasks.

318

14 Measurement and Operations
14.1 Evaluation Frameworks

14.1.3 Robust A/B Testing for Search

14.1.2 Online Business Metrics

While offline metrics are invaluable for model development, they are only a proxy
for the ultimate goal: improving the business. Online metrics are measured directly
from user interactions in the live production environment and reflect the true impact
of the search system on business performance.

Key online business metrics for search include:

• Conversion Rate (from Search). The percentage of search sessions that
result in a purchase. This is a primary indicator of search effectiveness.

• Average Order Value (AOV). The average monetary value of orders that
originate from a search session. This measures the system’s ability to guide
users towards higher-value purchases.

• Revenue Per Visitor (RPV) or Revenue Per Search: A composite metric
that combines conversion rate and AOV to provide a holistic view of revenue
generation.

In addition to these top-line business metrics, it is crucial to monitor search-specific
engagement metrics that act as leading indicators of user satisfaction or frustration:

• Click-Through Rate (CTR). The percentage of search results that are
clicked. A low CTR can indicate that the top-ranked results are not relevant
to the user’s query.

• Search Exit Rate. The percentage of users who leave the site directly from
a search results page. A high exit rate is a strong signal of a poor search
experience.

• ”No Result” Rate. The percentage of queries that return zero results. This
metric should be minimized by improving spell correction, synonym handling,
and retrieval strategies.

319

14 Measurement and Operations
14.1 Evaluation Frameworks

14.1.3 Robust A/B Testing for Search

14.1.3 Robust A/B Testing for Search

The definitive way to measure the impact of any change to the search system—whether
it’s a new ranking algorithm, a UI redesign, or a change to the autocomplete logic—is
through a controlled online experiment, commonly known as an A/B test (or split
test).

A robust A/B testing framework for search involves the following steps :

• Formulate a Hypothesis. Start with a clear, measurable prediction. For
example: ”If we replace the BM25 ranking model with a LambdaMART model
(change), then the search conversion rate will increase (expected outcome)
because the new model is better at ranking relevant products (rationale).”

• Design the Experiment. Create two versions: the ”control” (A), which
is the existing system, and the ”variant” or ”treatment” (B), which includes
the proposed change. Randomly split incoming user traffic between the two
versions. It is crucial to ensure that the assignment is consistent for each user
throughout their session.

• Run the Test and Collect Data. Run the experiment long enough to
collect a sufficient sample size to achieve statistical significance. This duration
depends on traffic volume and the expected effect size.

• Analyze Results. After the experiment concludes, compare the key online
metrics (e.g., conversion rate, RPV) between the control and variant groups.
Use statistical tests (e.g., t-test) to determine if the observed difference is
statistically significant (typically at a 95% confidence level), meaning it is
unlikely to be due to random chance.

When implementing A/B tests on a public-facing website, it is important to follow
best practices to avoid negatively impacting Search Engine Optimization (SEO) :

• Avoid Cloaking. Do not show different content to search engine crawlers
(like Googlebot) than to human users.

320

14 Measurement and Operations
14.2 System Architecture and MLOps

14.2.1 Search Microservice Design

• Use rel=”canonical”. If the test involves creating separate URLs for the
variant, use the rel=”canonical” tag on the variant page to point back to the
original control URL. This tells search engines that the pages are variations of
each other and consolidates ranking signals.

• Use 302 (Temporary) Redirects. If redirecting users to a variant URL, use
a 302 redirect, not a 301 (permanent) redirect. This signals to search engines
that the change is temporary and they should keep the original URL indexed.

A well-structured A/B testing platform is the engine of innovation for a search team,
enabling data-driven decision-making and continuous, measurable improvement.

14.2 System Architecture and MLOps

A modern, AI-powered search system is a complex, distributed application that
requires a well-designed architecture and robust operational practices to function
reliably at scale. This chapter provides a blueprint for the underlying infrastructure,
focusing on a microservices-based design, real-time data pipelines, and the principles
of Monitoring and Observability that are essential for maintaining system health.

14.2.1 Search Microservice Design

As established earlier in the book, a microservices architecture is the preferred
approach for building a scalable and resilient e-commerce platform. Within this
architecture, the Search service is a critical, specialized component with a clearly
defined scope and API.

The Search microservice is responsible for handling all search-related functionalities.
Its public API contract would typically expose endpoints for:

• Search. The primary endpoint that accepts a query, user information, and
context (e.g., page number, filters) and returns a ranked list of product IDs.

321

14 Measurement and Operations
14.2 System Architecture and MLOps
14.2.2 Real-Time Indexing Pipelines

• Autocomplete. An endpoint that takes a partial query string and returns a
list of suggested queries and/or products.

• Filtering/Faceting. Endpoints to retrieve available filter options (facets) for
a given query or category.

Internally, the Search service must communicate with other microservices to gather
the data it needs. This communication can happen via synchronous methods like
REST or gRPC, or asynchronously via a message broker. An API Gateway is
often used as a single entry point for all frontend requests, routing them to the
appropriate backend service.

Key interactions include:

• Product Catalog Service. To retrieve detailed product information (titles,
descriptions, attributes) for indexing.

• Inventory Service. To fetch real-time stock levels, which can be used as a
critical feature in the ranking model (e.g., to demote out-of-stock items).

• Pricing Service. To get up-to-date pricing and promotion information.

• User Service. To access user profiles and historical interaction data for
personalization.

This decoupled design allows the search team to own and evolve their service indepen-
dently, using the best technologies for their specific needs, such as Elasticsearch or
Vespa for the core index, and Python-based ML frameworks for the ranking models.

14.2.2 Real-Time Indexing Pipelines

An e-commerce catalog is not static. Prices change, inventory levels fluctuate, new
products are added, and old ones are removed. The search index must reflect these
changes in near real-time to prevent users from seeing outdated information, such as
incorrect prices or out-of-stock products, which leads to a poor user experience.

322

14 Measurement and Operations
14.2 System Architecture and MLOps
14.2.3 Monitoring and Observability

Building a real-time indexing pipeline is crucial for maintaining data fresh-
ness. This involves moving from periodic batch updates to a continuous, streaming
architecture. A typical real-time pipeline might look like this:

• Event Sourcing. Changes in the source-of-truth systems (e.g., the product or
inventory database) generate events. This is often implemented using Change
Data Capture (CDC) on the database.

• Event Streaming. These change events are published to a message broker
or streaming platform like Apache Kafka, Google Cloud Pub/Sub, or AWS
Kinesis.

• Stream Processing. A stream processing engine, such as Apache Flink or
a serverless function, consumes these events from the stream.

• Transformation and Enrichment. The processing engine transforms the
event data into the format required by the search index. This may involve
enriching the data by calling other services (e.g., fetching category information).

• Indexing. The transformed document is then sent to the search index (e.g.,
OpenSearch/Elasticsearch) to be added or updated.

This event-driven architecture ensures that changes to the product catalog are
propagated to the search index with very low latency (often in seconds), providing
users with an accurate and up-to-date view of the available products.

14.2.3 Monitoring and Observability

To operate a complex, distributed system like a search microservice reliably, a robust
strategy for monitoring and observability is essential. These two concepts are related
but distinct:

• Monitoring is about tracking pre-defined metrics to understand the overall
health of the system. It answers the question, ”What is wrong?” by using
dashboards and alerts to signal known failure modes (e.g., ”CPU usage is at
95%”).

323

14 Measurement and Operations
14.2 System Architecture and MLOps
14.2.3 Monitoring and Observability

• Observability is about instrumenting the system to collect detailed data (logs,
metrics, and traces) that allows engineers to debug and understand novel or
unknown failure modes. It answers the question, ”Why is this wrong?” by
providing the context needed for root cause analysis.

A comprehensive monitoring strategy for a search service should track the ”Four
Golden Signals” :

• Latency. The time it takes to serve a search request (e.g., the 95th and 99th
percentile API response times).

• Traffic. The demand on the system, measured in requests per second.

• Errors. The rate of failed requests, typically tracked by HTTP status codes
(e.g., 5xx server errors).

• Saturation. How ”full” the service is, measured by utilization of its core
resources (e.g., CPU, memory, disk I/O).

To achieve observability, the system must be instrumented to emit the ”Three
Pillars of Observability”:

• Logs. Detailed, time-stamped records of events that occur within the service.

• Metrics. Time-series numerical data representing the health and performance
of the system (the Golden Signals are examples of key metrics).

• Traces. A record of the path a single request takes as it flows through the
various components and microservices in the system. Distributed tracing is
critical for debugging latency issues in a microservices architecture.

For an e-commerce search team, key dashboards would visualize these signals, with
alerts configured to trigger on anomalies, such as a sudden spike in the ”no re-
sults” rate, a degradation in p99 query latency, or a significant lag in the real-time
indexing pipeline. Tools like Datadog, New Relic, or the Elastic Stack (Elastic-
search, Logstash, Kibana) are commonly used to implement these monitoring and
observability solutions.

324

14 Measurement and Operations
14.2 System Architecture and MLOps
14.2.3 Monitoring and Observability

The operational practices described in this chapter are not just about keeping the
system running; they are about creating the essential feedback loops that enable
continuous improvement. The MLOps pipelines that retrain ranking models based
on user behavior, the A/B testing framework that validates algorithmic changes,
and the observability platform that surfaces performance bottlenecks are all part
of a holistic system designed to learn, adapt, and evolve. This is the hallmark of a
modern, intelligent search platform.

325

15 Offline Search Evaluation and A/B
Testing

In the previous chapter, we established the critical importance of measurement,
defining the ”what”—the key offline and online metrics that quantify search perfor-
mance. This chapter focuses on the ”how”: building a robust operational framework
to execute these measurements, validate changes, and de-risk innovation.

Running experiments directly on live, production traffic, while the ultimate source
of truth, is fraught with peril. A traditional online A/B test for a new ranking
algorithm exposes a segment of real users to a potentially degraded experience,
risking customer frustration, lost sales, and long-term brand damage. The challenge
is to find a way to validate new ideas and gain confidence in their efficacy before
they ever touch a live user.

This chapter details the architecture and principles of an offline evaluation frame-
work, a ”search sandbox” where engineers and relevance teams can safely and rapidly
iterate. Such a framework allows you to move from high-risk trial-and-error to a
data-driven, scientific process for search improvement. It is the single most critical
piece of infrastructure for enabling a team to continuously and confidently enhance
search quality.

While this chapter uses the TestMySearch platform as a running, illustrative example
of such a system, the principles and components described are universal. A dedicated
engineering team can construct a similar, bespoke framework from the ground up
using the concepts outlined here.

15 Offline Search Evaluation and A/B Testing
15.1 The Conceptual Framework of Offline Evaluation
15.1.2 Pillar 2: Evaluation Sets (The ”Ground Truth”)

15.1 The Conceptual Framework of Offline Evaluation

A robust offline evaluation system is built on three conceptual pillars. These are the
core inputs required to run any controlled search experiment.

15.1.1 Pillar 1: Query Sets (The ”What”)

The foundation of any test is the set of queries you want to evaluate. A Query Set
is a representative list of search terms that your users are actually performing.

• Source. These sets are typically sourced from production analytics logs,
focusing on the most frequent queries, the highest-revenue queries, or, just as
importantly, the queries that lead to high ”search exit” or ”no result” rates.

• Format. In its simplest form, this is a CSV file containing a single column of
queries. A mature system will allow for multiple sets, enabling teams to test
performance on different segments, such as ”head queries,” ”long-tail queries,”
or ”queries for Brand X”.

15.1.2 Pillar 2: Evaluation Sets (The ”Ground Truth”)

This is the most critical and labor-intensive component of offline testing. An
Evaluation Set, or ”ground truth,” is your ”answer key.” It is a dataset that maps
queries from your Query Sets to the documents (products) that are known to be
relevant for them.

• Purpose. This answer key is what allows the system to calculate objective,
quantitative relevance metrics. Without it, you can’t automatically determine
if a new algorithm is better; you can only see that it’s different. The ground
truth is essential for calculating metrics like nDCG and Precision.

• Format. This is typically a CSV file where each row contains a query followed
by one or more relevant product URLs or SKUs.

328

15 Offline Search Evaluation and A/B Testing
15.2 Architecture of an Offline Test Harness

15.2.1 Isolation by Design (Sandboxing)

• Creation. This dataset is often built manually by human relevance assessors.
However, as we will explore later, this is a prime area for acceleration using AI.

15.1.3 Pillar 3: Search Configurations (The ”Contenders”)

The final input is a definition of the search configurations you wish to compare. The
entire purpose of this framework is to test a hypothesis, which requires a control and
a variant.

• ”Baseline” Configuration. This represents your current, production-level
search settings. It is the control group against which all changes are measured.

• ”Experiment” Configuration. This represents the change you want to
test. This could be a new ranking algorithm, a change in field weighting (e.g.,
boosting the title field), enabling a new feature like semantic search, or even
comparing two different search engines (e.g., Solr vs. Elasticsearch).

The framework must be able to connect to and query any of these defined search
engines from its isolated environment.

15.2 Architecture of an Offline Test Harness

With the core inputs defined, we can design the system that consumes them. This
”test harness” is an automated pipeline for executing experiments and calculating
results.

15.2.1 Isolation by Design (Sandboxing)

A foundational architectural principle is isolation. Different teams or different
experiments should not interfere with one another. A production-grade system will
implement a concept of Sandboxes. Technically, it can be implemented in different
ways, but without such capability, you can’t run different tests in parallel. The runs
may take days or even weeks.

329

15 Offline Search Evaluation and A/B Testing
15.2 Architecture of an Offline Test Harness

15.2.3 Analysis and Decision Making (The ”Payoff”)

A Sandbox is a self-contained workspace within the platform. It holds its own Query
Sets, Evaluation Sets, and test results. This ensures that an engineer experimenting
with a new ”Holiday 2026” configuration doesn’t accidentally see or modify the
test data being used by another team to fix a ”Zero Results” problem. This logical
separation is essential for organizational scalability and preventing data pollution.

15.2.2 The Test Execution Engine (Batch Runs)

The workhorse of the framework is the Batch Run. This is the core process that
orchestrates the entire test. Its function is to:

1. Receive Inputs: The user initiates a Batch Run by selecting one or more
Query Sets and one or more Search Configurations (e.g., ”Baseline” and
”Experiment”).

2. Execute Systematically: The engine loops through every query in the set
and sends it to each selected search configuration.

3. Store Results: For every query-configuration pair, the engine retrieves the
complete ranked list of results (e.g., the top 50 or 100 document IDs) and
stores this ”snapshot” in a database. This is all done asynchronously, allowing
for the execution of thousands of queries.

4. Calculate Metrics: As (or after) the results are stored, the system auto-
matically compares each ranked list against the pre-defined Evaluation Set
(Ground Truth).

5. Persist Scores: It calculates a full suite of IR metrics (nDCG@k, MAP,
Precision@k, Recall, MRR) for every single query and saves these scores
alongside the results.

330

15 Offline Search Evaluation and A/B Testing
15.3 Scaling Evaluation with AI (The ”Virtual Assessor”)

15.2.3 Analysis and Decision Making (The ”Payoff”)

Storing raw metrics is insufficient. The framework’s true value lies in its reporting and
analysis layer, which transforms this data into actionable decisions. The reporting
component must allow for deep, comparative analysis.

Aggregate vs. Per-Query

The system must provide both high-level aggregate statistics and granular, per-query
breakdowns.

• Aggregate Reports. These show the ”big picture” (e.g., Mean nDCG@10,
Mean Precision@5) across the entire query set. This allows you to quickly
identify the overall ”winner” of the experiment.

• Per-Query Reports. This is where engineers find the ”why.” A per-query, side-
by-side comparison table shows exactly which queries improved and—critically—which
queries regressed. A new algorithm might improve the average score but catas-
trophically degrade your top 10 most important queries. This view makes
those trade-offs visible.

Visualization:

The reporting layer should provide interactive charts and histograms to make the
data digestible. A chart plotting the per-query nDCG score for the ”Baseline” vs.
the ”Experiment” can make the impact of a change instantly obvious.

331

15 Offline Search Evaluation and A/B Testing
15.3 Scaling Evaluation with AI (The ”Virtual Assessor”)

15.3.1 AI-Powered Relevance Scoring

Statistical Significance:

A mature framework will also run statistical tests (e.g., pairwise t-tests) to determine if
the observed lift from the ”Experiment” is a real, statistically significant improvement
or just random noise.

15.3 Scaling Evaluation with AI (The ”Virtual Assessor”)

The primary bottleneck in this entire process is the creation of the ”Ground Truth”
Evaluation Set. Manually judging and labeling thousands of query-document pairs
is slow, expensive, and a barrier to rapid iteration.

Technically, this information can be extracted from the user behaviour data or
synthesized with the LLMs. The framework can support both options,.

Let’s look into where Large Language Models can be leveraged as part of the Virtual
Search Assessor functionality.

15.3.1 AI-Powered Relevance Scoring

Instead of relying solely on a static, manually created ”answer key,” an LLM can be
used to judge the relevance of search results on the fly.

• A Batch Run is executed, retrieving results from the ”Baseline” and ”Experi-
ment” configurations.

• The engineer then initiates an Assessment Run.

• For a given query (e.g., ”warm winter coat”) and a document from the results,
the system fetches the full document content.

• This content is chunked, and the most relevant chunks are identified (often
using embeddings).

332

15 Offline Search Evaluation and A/B Testing
15.3 Scaling Evaluation with AI (The ”Virtual Assessor”)

15.3.4 Case Study: Off-Policy Evaluation for Simulating SERP Layouts

• The query and the relevant content are fed to an LLM, which is prompted to
act as a human relevance judge and provide a score (e.g., on a scale of 0-3).

• This generated relevance score (EvalScore) can then be used to calculate
nDCG and other metrics, effectively creating ground truth ”on demand.”

15.3.2 AI-Powered Query Generation

The other side of the ”cold start” problem is not having enough test queries. An
LLM can be used to analyze your existing products to generate new, relevant test
queries, dramatically expanding your test coverage.

The process involves pointing the Virtual Assessor at a set of products. The LLM
performs a deep content analysis of the product’s data (title, description, specs) to
understand its key topics and concepts. It then generates a list of both traditional
keyword queries and natural language questions that this document would be a
perfect answer for. This new set of queries can be used to ensure your most important
products are discoverable.

15.3.3 AI-Powered Analysis (LLM Judgement)

Finally, LLMs can be applied to the end of the pipeline. After a comparative report
is generated, an engineer can be left with a sea of numbers and charts. An ”LLM
Judgement” feature can be triggered, feeding the aggregate metrics and pairwise
comparisons to an LLM. The LLM then acts as an automated data analyst, providing
a qualitative summary of which configuration performed best and why, pointing out
specific strengths and weaknesses in natural language.

15.3.4 Case Study: Off-Policy Evaluation for Simulating SERP Layouts

While our previous discussions on offline evaluation provide the conceptual framework,
a 2024 paper from Amazon, ”Offline Multi-Objective Optimization (OMOO) in

333

15 Offline Search Evaluation and A/B Testing
15.3 Scaling Evaluation with AI (The ”Virtual Assessor”)

15.3.4 Case Study: Off-Policy Evaluation for Simulating SERP Layouts

Search Page Layout Optimization Using Off-policy Evaluation,”1 provides a powerful,
practical blueprint for how to implement such a system at scale.

This work tackles a notoriously difficult and high-stakes problem: optimizing the
layout of the Search Engine Results Page (SERP). This challenge goes far beyond
just changing the order of products; it involves deciding the very structure of the
page. Should the SERP show a ”Shop by Brand” widget after the first three product
results, or a promotional banner after five? Should it display four results per row or
two? Each of these layout decisions can have a massive impact on user engagement
and revenue.

The straightforward, naive approach to this problem is to run a massive, parallel
A/B test, deploying dozens of layout variations to different segments of live traffic.
For a large-scale e-commerce platform, this method is unacceptably slow and risky.
A poorly performing layout shown to even 1% of users can cost millions in lost
revenue and erode customer trust. Furthermore, the number of possible layouts
is combinatorially explosive; it is simply not feasible to test every promising idea
in a live environment. This creates a critical business need for a ”virtual testing
ground”—a way to safely and rapidly evaluate thousands of layout possibilities
offline.

The framework presented by Lahiri, Qin, and Liu is built on the concept of Off-
Policy Evaluation (OPE). In simple terms, OPE is a powerful set of statistical
and machine learning techniques that allows you to use data collected from your
current system (the ”on-policy” data) to reliably predict how a new, hypothetical
system (an ”off-policy” one) would have performed. It is the key to building the
”virtual assessor” that this chapter describes, allowing you to answer the question,
”What would have happened if we had shown this new layout to our users yesterday?”
without actually having to run the experiment.

However, many traditional OPE methods, such as Inverse Propensity Scoring, often
suffer from a critical flaw: they can have high variance. This means their predictions
can be unstable and untrustworthy, especially with sparse e-commerce data where
most users do nothing (a ”zero-inflated” reward landscape). The paper’s core
innovation is to bypass these limitations by building a sophisticated user behavior
1https://sigir-ecom.github.io/eCom24Papers/paper 21.pdf

334

15 Offline Search Evaluation and A/B Testing
15.4 A Concrete Implementation Example: TestMySearch

simulator, which they call a ”Reward Vector Generator”. This component is,
in essence, the scalable, AI-powered ”virtual assessor” we’ve been looking for.

Instead of a simple statistical formula, this generator is a deep learning model trained
on historical data (specifically, data from a small percentage of ”exploration” traffic
where layouts are shown randomly). For any given context (like a user’s query and
profile) and any proposed layout, this model doesn’t just predict a single average
outcome (like ”0.15 clicks”). Instead, it predicts the full distribution of probable
outcomes—what the paper refers to as a ”reward vector.” For example, it might
predict a ”70% chance of 0 clicks, 25% chance of 1 click, and 5% chance of 2+ clicks,”
as well as a separate distribution for revenue. This is a much richer, more realistic,
and more stable simulation of user behavior.

With this high-fidelity simulator in place, the team can now run their optimization
process entirely offline. They can programmatically generate thousands of potential
layout strategies and ”test” each one against their virtual user to see what the
probable outcome would be. Because this is all offline, they can test strategies that
optimize for different, competing goals. This is the Multi-Objective Optimization
(OMOO) part of the paper’s title. They can find one layout that is predicted to be
best for maximizing user clicks, another that is best for maximizing revenue, and a
third that finds the optimal balance between both.

The conclusion of this work is a framework that can find the Pareto frontier—the
set of optimal layouts where you cannot improve one metric (like revenue) without
hurting another (like clicks). The business can then select a single, pre-vetted,
high-performing layout from this frontier to promote to a final, much lower-risk
online A/B test. This Amazon paper provides a concrete blueprint for scaling
evaluation. It demonstrates how to build a virtual assessor that not only predicts the
performance of a change but can proactively find the optimal change from thousands
of possibilities, all before a single real user is ever exposed to the experiment.

335

15 Offline Search Evaluation and A/B Testing
15.4 A Concrete Implementation Example: TestMySearch

15.4 A Concrete Implementation Example: TestMySearch

As an illustrative example of these concepts in a unified system, we can look at the
architecture of the TestMySearch platform. It is designed to directly implement the
philosophy described in this chapter, but these same components could be built as
an internal-platform-as-a-service.

• Isolation. The platform implements isolation through a two-tiered hierarchy
of Accounts (the organization) and Sandboxes (the individual project or
workspace). An Account defines the available Search Connectors and LLM
Configurations, while each Sandbox contains its own isolated sets of data.

• Core Primitives. The core inputs are exactly as described: Query Sets (for
test inputs) and Expected Results (for ground truth).

• Execution. The core process is the Batch Run, which executes queries against
configured search engines and calculates metrics by comparing the results to
the Expected Results sets.

• Analysis. The Generated Reports module provides the deep comparative
analysis, including aggregate statistics, per-query side-by-side views, and AI-
powered LLM Judgement summaries.

• AI-Powered Scaling. To manage the workflow of AI-driven tasks, the
platform uses a concept called the Basket. This is a temporary staging area
where an engineer can collect items (like a set of product results from a run,
or a group of queries from an Evaluation Set). From the Basket, the engineer
can launch advanced, asynchronous jobs like an Assessment Run (to generate
relevance scores) or Query Generation (to create new test queries), which
then populate the other sections of the Sandbox.

336

16 Search Analytics

This chapter outlines a conceptual view of how an analytics system for e-commerce
should operate. As of 2025, several analytics platforms have been developed specifi-
cally for e-commerce, including proprietary solutions by the author. However, the
book intentionally avoids discussing specific products or vendors, focusing instead on
the underlying principles. By the end of this chapter, readers will gain a clear under-
standing of what to expect from a SaaS provider—or from an internal development
team—when implementing or building such a system in-house.

16.1 E-commerce Search Analytics

While the preceding chapters detailed the critical methodologies for validating specific
changes to our search system—namely, offline evaluation for assessing relevance in
controlled environments and rigorous online A/B testing for measuring real-world
business impact —these techniques primarily serve to answer the question, ”Did
this particular change work?”. They are snapshots in time, essential for de-risking
innovation but insufficient for the day-to-day, continuous understanding required to
operate a world-class search platform.

This is where e-commerce search analytics comes into play. It represents the
ongoing, systematic collection, processing, and analysis of real-world user interaction
data. Search analytics is not merely about tracking vanity metrics; it is the engine
that powers the crucial Feedback Loop. It transforms the raw, often chaotic
stream of user clicks, queries, add-to-carts, and purchases into actionable insights.
These insights allow us to understand user behavior in aggregate, monitor the health
and performance of the search system continuously, identify emerging trends and
opportunities, and ultimately, drive the entire cycle of iterative improvement.

16 Search Analytics
16.1 E-commerce Search Analytics

16.1.1 Why Google Analytics and Adobe Analytics Might Not Be Enough

The goal of implementing a robust search analytics practice extends far beyond
simply measuring the relevance of search results against queries. While understanding
relevance is foundational, true insight comes from adopting a holistic perspective.
We aim to understand the entire user journey as it relates to search—how users
formulate their initial queries, how they refine them using suggestions or facets ,
how they interact with the results page, and, most critically, how these interactions
ultimately connect to tangible business outcomes like conversion rates, average
order value, and overall revenue. Search analytics, therefore, provides the essential
lens through which we can observe, measure, and optimize not just the search
algorithm, but the entire product discovery experience and its direct contribution to
the business’s bottom line.

16.1.1 Why Google Analytics and Adobe Analytics Might Not Be Enough

While powerful platforms like Google Analytics (GA) and Adobe Analytics (AA) are
indispensable tools for understanding overall website traffic, user demographics, and
general conversion funnels, relying solely on them for deep e-commerce search
analysis often falls short. Their strengths lie in providing a broad view of site
performance, but the unique, granular nature of search interaction demands a more
specialized lens. Several key limitations prevent these standard analytics suites from
offering the complete picture needed for effective search optimization.

It is important to highlight that we are talking about the out-of-the-box implemen-
tations. Many things can be added via customization. However, the systems don’t
give you access to the raw events that creates a lot of barriers for customizations.

Perhaps the most significant gap is the lack of inherent positional data within
search results. Knowing that a user clicked on a product after a search is useful, but
knowing they clicked on the product ranked at position 15 is a critical relevance
signal. Standard web analytics platforms are typically page-centric; they track that a
user navigated from page A (SERP) to page B (PDP), but they don’t automatically
capture the rank or context of the specific link clicked on page A. Obtaining this
requires custom event tracking, which can be complex to implement and maintain
consistently.

338

16 Search Analytics
16.1 E-commerce Search Analytics

16.1.1 Why Google Analytics and Adobe Analytics Might Not Be Enough

Furthermore, connecting the full search-influenced user journey can be
challenging. While GA and AA excel at sessionization , attributing a final purchase
back to the specific sequence of search queries, refinements, facet interactions ,
and product views that initiated the journey requires sophisticated setup. Default
attribution models often credit the last touchpoint, potentially obscuring the crucial
role an initial exploratory search played in the conversion. Understanding if a user
searched, refined three times, viewed five products, and then purchased requires
linking events in a way that standard configurations may not support out-of-the-box.

Many crucial search-specific KPIs are also not standard reports in these platforms.
Metrics like the Zero Result Rate, Search Abandonment Rate (searches followed
by no clicks), Average Click Position (ACP), or detailed facet usage patterns often
need to be derived through custom reports, segments, or calculated metrics based on
meticulously implemented custom event tracking. This places a significant burden
on the analytics team to configure and validate these metrics, rather than having
them readily available.

Data granularity and sampling can also be an issue. Free versions of platforms
like Google Analytics may employ data sampling on large datasets, which can obscure
subtle but important patterns in long-tail search queries or specific user segments.
While premium versions offer unsampled data, the need for full granularity highlights
that the default offerings might not suffice for the deep dives required in search
analysis.

Finally, standard analytics platforms are often focused on page views and tran-
sitions, whereas optimizing search requires understanding fine-grained in-page
interactions. Tracking clicks on specific result snippets, engagement with sug-
gestion types , or interactions within facet menus provides much richer behavioral
context than simply knowing a user stayed on the SERP for a certain duration.

These limitations don’t mean GA or AA are useless for the purpose; they are vital for
macro-level understanding. However, for the specific, nuanced, and journey-centric
insights needed to truly optimize the e-commerce search experience, a dedicated
search analytics approach—whether built in-house, sourced from a specialized ven-
dor, or achieved through significant customization and integration with standard
platforms—becomes a necessity. It provides the depth and focus required to move

339

16 Search Analytics
16.2 The ”Why”: Strategic Importance of Search Analytics

16.2.2 Driving Data-Driven Decisions

beyond general traffic patterns and truly understand how users find (or fail to find)
products through search.

16.2 The ”Why”: Strategic Importance of Search Analytics

Understanding why to invest in search analytics is just as important as knowing
how to implement it. It’s not merely about collecting data for its own sake; it’s
about unlocking strategic advantages that directly impact the user experience and
the business’s bottom line. Implementing a robust analytics practice moves search
optimization from a reactive, often intuition-driven process to a proactive, data-
informed discipline.

16.2.1 Understanding the High-Intent User

As we’ve established, users who engage with the search bar represent a uniquely
valuable segment. They arrive with a higher intent to purchase, converting at
significantly better rates and often spending more than their browsing counterparts.

Search analytics can provide an unparalleled window into the minds of these critical
customers. By analyzing their queries, click patterns, and conversion paths, we
can gain direct insight into what they want, often expressed in their own natural
language, which may differ significantly from our internal catalog terminology.

Analytics reveals the language they use, uncovering valuable synonyms, regional
variations, and emerging slang that can be fed back into the Query Understanding
system. Crucially, it also illuminates where they struggle—identifying queries
that lead to zero results, abandonment, or frustratingly deep clicks into the result
pages, pinpointing specific areas for improvement.

340

16 Search Analytics
16.2 The ”Why”: Strategic Importance of Search Analytics

16.2.3 Connecting Search to Business Outcomes

16.2.2 Driving Data-Driven Decisions

Without analytics, decisions about search improvements often rely on anecdotal
evidence, gut feelings, or the loudest voice in the room. Should we invest engineering
time in adding synonyms for query X or fixing the ranking for query Y? Analytics
replaces this guesswork with objective evidence. By quantifying the volume, conver-
sion rate, and associated revenue for different queries and user behaviors, analytics
provides a clear framework for prioritizing work.

For example, seeing that a specific zero-result query is attempted hundreds of times
per day, while another only occurs rarely, makes the decision clear: fix the high-
volume issue first. Analytics allows us to focus resources on the changes that will
have the greatest measurable impact on the largest number of users or the most
valuable customer segments.

16.2.3 Connecting Search to Business Outcomes

Ultimately, an e-commerce search engine exists to drive commercial results. It’s
therefore essential to explicitly connect search interactions to core business KPIs like
conversions, revenue, and Average Order Value (AOV). Search analytics, particularly
when integrated with order data through careful attribution modeling, makes this
connection tangible. It allows us to answer critical questions like, ”How much revenue
did searches for ’brand X’ generate last quarter?” or ”Does using the ’color’ facet
increase the likelihood of purchase?”. By quantifying the business impact of
search performance (or its failures), analytics elevates the conversation about search
from a purely technical discussion to a strategic business imperative. It provides
the concrete numbers needed to justify investment in search improvements and
demonstrate the ROI of those efforts to stakeholders.

In the ”Improving precision of e-commerce search results” talk1, the speakers, Jens
Kürsten and Arne Vogt, describe the report where the x-axis represents the positions
in the search results. On this plot, dots of one color/style represent the ”relevant
score” (topical relevance), and dots of the other color/style represent the ”business

1https://www.youtube.com/watch?v=DTS0TIYx5fc

341

16 Search Analytics
16.2 The ”Why”: Strategic Importance of Search Analytics

16.2.4 Identifying Opportunities and Threats

value” for each product at that position. They explain that an ideal scenario would
show a flat line of ”relevant score” dots, indicating all products are relevant, while
the line of ”business value” dots should slowly decrease”. This setup is intended to
ensure the ”relevant most successful product” appears in the first position. They use
this visualization to identify ”outliers,” such as a product in the first position that
has a low relevance score but an ”outstanding business value,” which undesirably
”up our ranking”.

16.2.4 Identifying Opportunities and Threats

Beyond monitoring existing performance, search analytics is a powerful engine for
discovery, revealing both opportunities for growth and potential threats to the user
experience.

• Catalog Gaps. Analyzing high-volume queries that result in zero results is one
of the most direct ways to identify unmet demand. If users are consistently
searching for products or brands you don’t carry, it’s a strong signal for the
merchandising team to consider expanding the assortment.

• Merchandising Insights. Tracking which searches are trending, which
product attributes or brands are most frequently clicked within suggestions
or filtered via facets, and which products consistently underperform in search
despite visibility, provides invaluable real-time feedback for merchandising
strategies. This data can inform promotions, inventory planning, and even
product development.

• Friction Points. Identifying queries with high abandonment rates (users
search but don’t click anything) or unusually deep average click positions
suggests significant relevance or UX issues. These ”friction points” signal
that users aren’t finding what they expect quickly, prompting investigation into
ranking algorithms, snippet presentation, or query understanding accuracy.

• Competitive Benchmarking (Implicit). While analytics doesn’t directly
show competitor data, understanding the terms and language users employ
provides crucial context about market expectations. If users frequently search

342

16 Search Analytics
16.3 Data Collection

16.3.1 Essential Data Points (Events/Attributes)

using terminology common on competitor sites but absent from yours, it
indicates a need to align your product descriptions, attributes, and synonym
lists with the broader market language to remain competitive and meet user
expectations.

In essence, search analytics acts as the eyes and ears of the search platform, constantly
observing user behavior, measuring outcomes, and highlighting areas where the
system can be improved to better serve both the user and the business.

16.3 Data Collection

To build a meaningful search analytics practice, we must first lay the foundation:
collecting the right data. The core principle guiding this effort is the need to
capture events across the entire search-influenced user journey, not just the
isolated interaction with the search results page (SERP). A user’s path from query to
potential purchase is often complex, involving refinements, product comparisons, and
navigation between search results and product detail pages (PDPs). Understanding
this complete flow requires instrumenting multiple touchpoints to gather a rich,
interconnected dataset. Simply knowing which query was issued and which product
was ultimately purchased is insufficient; we need to capture the steps in between to
understand the why behind the what.

16.3.1 Essential Data Points (Events/Attributes)

Designing an effective data collection strategy requires identifying the specific pieces
of information needed to reconstruct the user’s journey and calculate meaningful
metrics. While the exact implementation details will vary, the following data points
represent the essential building blocks:

• User/Session Identification. Assigning unique identifiers for both the
user (if known, even an anonymous cookie ID) and their current session is
fundamental. These IDs act as the primary keys that allow us to link disparate

343

16 Search Analytics
16.3 Data Collection

16.3.1 Essential Data Points (Events/Attributes)

events—a search query, a product click, an add-to-cart action—back to a single
user’s visit, enabling sessionization and journey analysis.

• Timestamp. Recording the precise time of each event is critical for under-
standing the sequence of actions and calculating durations (e.g., time spent on
SERP before clicking). This temporal dimension is essential for reconstructing
the user’s path and identifying potential points of friction or hesitation.

• Page/Event Type. We need a clear indicator to differentiate the various
types of user actions and page views being recorded. Common types include
SERP/PLP views, PDP views, Add-to-cart (ATC) events, and PO events
(Purchase Order placed). This categorization allows us to segment the data
and analyze distinct stages of the funnel.

• Search Context. When an event occurs within or originates from a search
context, capturing that context is vital. This includes:

– Raw User Query. The exact string the user typed.

– Processed/Corrected Query. The query after any normalization, spell
correction, or synonym expansion applied by the backend. Comparing
raw vs. processed queries helps evaluate the effectiveness of the Query
Understanding pipeline.

– Filters/Facets Applied. Which specific facet values (e.g., brand:Nike,
color:Red) were active when the event occurred. This is crucial for
understanding refinement behavior.

– Sort Order Selected. Was the user viewing results by relevance, price,
rating, etc.?

– Page Number Viewed. Capturing pagination helps understand how
deep users are willing to go.

– Number of Results Returned. Knowing if a query returned 10 results
versus 10,000 provides context for subsequent actions (or lack thereof).
This is especially important for identifying zero-result searches.

344

16 Search Analytics
16.3 Data Collection

16.3.1 Essential Data Points (Events/Attributes)

• SERP Interaction. Specific events occurring on the search results page itself
need detailed tracking:

– Product IDs Displayed (Impressions). Which specific products
were shown to the user on that results page, and crucially, what was
their Rank/Position? This forms the denominator for calculating click-
through rates.

– Product ID Clicked. Which specific product did the user click on?
What was its Rank/Position (both on the page and its absolute position
across all pages)? This is arguably the most important implicit relevance
signal. Capturing the absolute position is critical, as a click on position
#25 (page 2) signifies a very different level of user effort and potential
relevance issue than a click on position #2.

• Downstream Actions. To connect search to business outcomes, we must
track actions that occur after the initial SERP interaction, linking them back
to the originating search context whenever possible:

– PDP View. Recording visits to product detail pages, ideally noting if
the entry point was a click from a specific search query.

– ATC Action. Capturing the Product ID, Quantity, and Price when an
item is added to the cart, again linking back to the search context if the
ATC originated from a SERP click or a PDP view following a search.

– Purchase Event (PO). Recording the final transaction details (Order
ID, Product IDs, Quantities, Prices), attributing the purchase back to
the search session that influenced it using a defined attribution model.

• Contextual Information. Additional metadata provides valuable dimensions
for segmentation and analysis:

– Device Type. (Desktop, Mobile, Tablet) User behavior often differs
significantly across devices.

345

16 Search Analytics
16.4 Data Processing

– Location. (Country, Region - anonymized if necessary) Useful for under-
standing geographic trends or diagnosing issues with localized results.

– Language. Essential for multilingual sites to segment analysis by user
language preference.

16.3.2 Technical Considerations

Implementing this data collection requires coordination between frontend and backend
systems. While a deep dive into event tracking platforms is beyond the scope of this
book, some key technical considerations are worth noting briefly.

Reliable event tracking systems are essential. Options range from enterprise
platforms like Snowplow to custom logging pipelines utilizing APIs or tracking pixels.
The chosen system must be capable of handling high event volume with low latency
and providing mechanisms for ensuring data quality.

Significant frontend instrumentation is required to capture user interactions
accurately, particularly clicks on specific search results and their positions within
the dynamically rendered list. This often involves adding specific data attributes to
HTML elements and implementing JavaScript listeners to capture and send events.

Backend logging is equally crucial for capturing details unavailable to the frontend,
such as the processed query, the full list of product IDs returned by the search engine
(not just those rendered on the first page), and internal system performance metrics.

Finally, establishing reliable user and session tracking mechanisms—often
involving a combination of cookies, browser storage, and backend session man-
agement—is paramount for linking individual events into coherent user journeys.
Consistency in how users and sessions are identified across different events and
platforms is critical for accurate analysis.

Careful planning and implementation of this data collection layer are prerequisites
for any meaningful search analytics effort. Without comprehensive, accurate, and
well-structured data capturing the nuances of the user journey, any subsequent
analysis will be fundamentally limited.

346

This is a demonstration PDF.
The full book is available for purchase:

https://testmysearch.com/my-books.html

17 User Experience and Future of Search

After delving into the deep technical intricacies of the search backend, this final part
of the book returns the focus to the end-user. The most sophisticated algorithm is
worthless if the user interface is confusing or the experience is frustrating. This section
connects the underlying technology to the principles of user experience (UX) design,
providing evidence-based best practices for creating an intuitive and effective search
interface. Finally, it looks to the horizon, exploring the transformative impact of
generative AI and Large Language Models on the future of product discovery, moving
beyond simple retrieval and ranking towards a more interactive, conversational, and
synthesized shopping experience.

This part of the book serves as a crucial bridge, connecting the deep backend architec-
tures to the tangible, user-facing experiences they power. The narrative arc traces the
evolution of the search interaction model, beginning with the classic, well-understood
Graphical User Interface (GUI) paradigm—the search box and results page—and
progressing to the emerging paradigms of dialogue-driven conversational search
and, ultimately, proactive, autonomous agentic systems. This framing positions the
content not as a collection of disparate topics, but as a coherent story about the
increasing intelligence and autonomy of the search interface itself.

17.1 Engineering the Search UI

A high-performing search experience is the product of a seamless collaboration
between backend engineering and thoughtful user experience design. This chapter
dissects the ”classic” search UI from a rigorous engineering perspective. The focus is
not on visual design, but on the architectural decisions, data flows, and performance
trade-offs that underpin a high-performing search frontend. Even these ”traditional”

17 User Experience and Future of Search
17.1 Engineering the Search UI

17.1.1 Frontend Architectural Foundations

components are complex distributed systems in their own right, requiring careful
architectural consideration to achieve low latency and a seamless user experience.

17.1.1 Frontend Architectural Foundations

This section addresses the two most fundamental architectural decisions an engi-
neering team must make when building the search frontend: how the Search Engine
Results Page (SERP) is rendered and how it communicates with the backend Search
microservice.

17.1.1.1 CSR vs SSR for SERP

The choice between Client-Side Rendering (CSR) and Server-Side Rendering (SSR)
for the initial load of an e-commerce SERP has profound implications for performance,
user experience, and business outcomes. With CSR, the server delivers a minimal
HTML document, often little more than a shell, along with the JavaScript code
needed to dynamically generate and update the content on the page. The client’s
browser is responsible for executing this JavaScript, which typically involves making
one or more API calls to fetch the search results and then rendering the complete
user interface. This approach offloads the rendering workload from the server, which
can reduce server-side processing requirements and potentially lower infrastructure
costs, especially during periods of high traffic.

However, for an e-commerce SERP, the disadvantages of CSR are severe and often
outweigh the benefits. The primary drawback is a slower initial page load time.
Users may be presented with a blank page or a loading indicator while the browser
downloads, parses, and executes the necessary JavaScript bundles before any content
can be displayed. This delay negatively impacts key performance metrics like Time
to First Byte (TTFB) and First Contentful Paint (FCP), leading to a poor perceived
performance that can increase bounce rates. Furthermore, CSR presents significant
challenges for Search Engine Optimization (SEO) - of course, it is related mainly
to the category pages (built on top of the search engine) rather than search result
pages. While modern search engine crawlers have improved their ability to execute

362

17 User Experience and Future of Search
17.1 Engineering the Search UI

17.1.1 Frontend Architectural Foundations

JavaScript, they can still struggle with complex applications or pages where rendering
takes too long. Content that is not immediately present in the initial HTML source
may be indexed less frequently or incompletely, harming the site’s visibility in organic
search results—a critical user acquisition channel for any e-commerce business.

In contrast, SSR involves the server generating the full HTML content of the webpage,
including the initial set of search results, before sending it to the client’s browser.
When the browser receives the response, it has a complete, renderable page, allowing
meaningful content to be displayed to the user almost immediately. This results in a
significantly faster initial page load and a superior user experience. From an SEO
perspective, SSR is vastly preferable because the fully rendered HTML content is
readily available to search engine crawlers, ensuring effective indexing and ranking.
The primary trade-off with SSR is an increased load on the server, as it must handle
the rendering process for each request, which can lead to higher infrastructure costs
and greater complexity in development.

In e-commerce, implementing search through APIs often comes with the added
challenge of protecting those APIs from bot usage and abuse.

For the initial load of an e-commerce SERP, SSR is the unequivocally correct
architectural choice. The non-negotiable business requirements of fast perceived
performance to maximize conversion and strong SEO to drive organic traffic make
the benefits of SSR far more valuable than the potential server-side cost savings
of CSR. The choice between these rendering strategies is not merely a technical
preference but a direct encoding of business priorities. A decision to use CSR for a
primary landing surface like the SERP implicitly prioritizes short-term operational
cost savings over the long-term growth driven by a superior user experience and a
robust organic acquisition strategy. This highlights a crucial principle for engineers
in this domain: architectural decisions are rarely purely technical; they are business
strategy implemented in code. The engineer’s role extends beyond simply building
the system to articulating these critical trade-offs to business stakeholders.

363

17 User Experience and Future of Search
17.1 Engineering the Search UI

17.1.1 Frontend Architectural Foundations

17.1.1.2 API Design IDs vs Payload

A second critical architectural decision concerns the API contract between the
frontend and the backend Search microservice. Specifically, what should the /search
endpoint return? This is a classic debate in microservices API design with significant
implications for performance, scalability, and system coupling.

One approach is for the Search service to return a full payload for each product in
the result set. In this model, the API response would be an array of complete JSON
objects, each containing all the information needed to render a product snippet on
the SERP, such as its title, price, image URL, brand, and average rating. This design
simplifies the frontend logic, as the client application receives all the necessary data
in a single API call. However, this approach has notable drawbacks. It can lead to
large and slow-to-download payloads, which is particularly problematic for users on
mobile devices or slower networks. It also creates a tight coupling between the Search
service and the data models of other microservices. The Search service is forced
to know about the data schemas of the Product Catalog, Pricing, and Inventory
services, violating the principle of service autonomy and making the system more
brittle to changes.

An alternative approach is for the Search service to return only an ordered list of
product IDs In this model, the Search service’s sole responsibility is to execute the
query, perform the ranking, and return a simple list like [”prod-123”, ”prod-456”,
”prod-789”]. The frontend application (or an intermediary layer) is then responsible
for ”hydrating” these IDs by making subsequent, parallel API calls to the relevant
microservices—for example, calling the Product Catalog service to get titles and
descriptions, the Pricing service to get prices, and so on. This design keeps the
Search service lean, highly specialized, and decoupled from other parts of the system.
However, it can lead to ”chatty” communication patterns, where the client must
make numerous small requests to render a single page, increasing overall latency and
client-side complexity.

The modern, recommended solution that balances these trade-offs is the API
Composition Pattern. This pattern introduces an aggregator service—often
implemented as part of an API Gateway or as a dedicated Backend-for-Frontend

364

17 User Experience and Future of Search
17.1 Engineering the Search UI

17.1.2 Autocomplete System Architecture

(BFF)—that sits between the client and the backend microservices. The workflow
is as follows: the client makes a single request to the aggregator; the aggregator
then orchestrates the necessary backend calls, first invoking the Search service
to get the ranked list of product IDs, and then concurrently calling the other
services to fetch the full details for those IDs. Finally, the aggregator composes the
individual responses into a single, unified payload and returns it to the client. This
pattern encapsulates the complexity of inter-service communication, optimizes for
performance by parallelizing the data-fetching calls, and keeps the client application
simple and efficient.

This ”IDs vs. Payload” debate is a microcosm of the fundamental tension in
microservices architecture: the desire for service autonomy versus the need for overall
system performance. A design that returns only product IDs maximizes the Search
service’s autonomy and adheres to the ”don’t share data” principle, as the service
only needs to be an expert in searching, not in the full product schema. However,
this approach sacrifices system-level performance for the sake of individual service
purity by forcing the client to orchestrate multiple calls, leading to high latency
from network chattiness. The API Composition pattern resolves this tension by
introducing a dedicated component—the aggregator—whose sole responsibility is to
manage this cross-service orchestration. This allows individual services like Search to
remain autonomous and specialized, while the system as a whole remains performant
from the client’s perspective. The aggregator acts as an essential insulation layer,
absorbing the complexity of inter-service communication and making a distributed
microservices architecture both practical and performant at scale.

17.1.2 Autocomplete System Architecture

A production-grade autocomplete system is a multi-layered architecture designed for
extreme low-latency performance. This section provides an end-to-end engineering
guide to building such a system, from the user-facing API down to the core data
structures.

365

17 User Experience and Future of Search
17.1 Engineering the Search UI

17.1.2 Autocomplete System Architecture

17.1.2.1 Autocomplete API and UX

The autocomplete feature’s primary goal is to provide instant, relevant suggestions
as a user types, speeding up the search process and guiding discovery. A well-
designed API is the foundation for this experience. The REST API endpoint should
be designed for extensibility; a query parameter-based approach, such as GET
/suggest?q={term}, is preferable to a path-based one like GET /suggest/{term}
because it more easily accommodates additional parameters. The request payload
should support parameters for personalization (e.g., userId), location biasing for
geographically relevant results, and controlling the maximum number of suggestions
returned (e.g., limit=10).

The response payload must be structured to differentiate between various types of
suggestions, such as query completions, direct product suggestions, and category
links, to allow the frontend to render them distinctly. For example, the JSON
response might contain separate keys like query suggestions and product suggestions.
Essential features that the system must support include typo tolerance, which
corrects misspellings in real-time, and a denylist mechanism to filter out unsafe
or inappropriate terms. From a user experience perspective, it is critical that the
UI visually highlights the portion of each suggestion that matches the user’s input,
providing clear feedback and reinforcing the connection between their query and the
results.

17.1.2.2 Autocomplete Data Structures

At the heart of any autocomplete system is a data structure optimized for efficient
prefix matching. While a standard database query using LIKE ’prefix%’ is far
too slow to meet the low-latency demands of an interactive system, a specialized
tree-based data structure known as a Trie, or prefix tree, is the canonical solution.

A Trie is a tree where each node represents a character, and any path from the root
to a node represents a common prefix of the words stored in the tree. To insert a
word, one traverses the tree character by character, creating new nodes as needed.
To find all words with a given prefix, one simply traverses the tree to the node

366

17 User Experience and Future of Search
17.1 Engineering the Search UI

17.1.2 Autocomplete System Architecture

corresponding to that prefix and then performs a traversal of the subtree rooted at
that node to collect all possible completions. This allows for prefix searches in a
time complexity proportional to the length of the prefix, making it extremely fast.

However, a naive implementation of a Trie suffers from a significant drawback: high
memory consumption. Each node in a simple Trie must store an array of pointers,
one for each character in the alphabet (e.g., 26 pointers for lowercase English letters).
Since most of these pointers will be null for any given node, this leads to a large
amount of wasted space, especially when supporting larger character sets. To address
this, a more memory-efficient alternative is the Ternary Search Tree (TST). A
TST solves the memory problem by representing the children of each node not as a
fixed-size array, but as a balanced binary search tree. Each node in a TST stores a
character and three pointers: one for a child with a character less than the current
node’s character, one for a child with an equal character (which corresponds to
moving to the next character in the word), and one for a child with a character
greater than the current node’s character. This structure provides the same time
complexity for searches as a Trie but with substantially lower memory overhead.

17.1.2.3 Autocomplete Caching Strategy

Even with an efficient core data structure, achieving the sub-50ms latency required
for a seamless autocomplete experience necessitates a robust, multi-layered caching
strategy. No single technique is sufficient; performance is a full-stack concern.

The first layer is client-side caching, where the browser stores the results of recent
prefix queries in memory or localStorage. This completely eliminates the network
round-trip for repeated or refined prefixes within the same user session. For example,
if a user types ”lap” and then ”lapt”, the results for ”lap” can be served from the
local cache while a new network request is made for ”lapt”.

The second and most critical layer is server-side caching, typically implemented
using a distributed in-memory data store like Redis. This layer follows the Cache-
Aside (or Lazy Loading) pattern. When a request for a prefix arrives at the
backend, the application first checks the Redis cache. If the results are present (a
cache hit), they are returned immediately, avoiding any computation. If the results

367

17 User Experience and Future of Search
17.1 Engineering the Search UI

17.1.3 Engineering Faceted Navigation

are not in the cache (a cache miss), the application queries the underlying Trie/TST,
stores the results in the cache with a specific Time-to-Live (TTL), and then returns
them to the client. This ensures that popular prefixes are served with extremely low
latency.

A production-grade autocomplete system is therefore not just ”a Trie” but a composite
system. Each layer—the client-side cache, the server-side cache, and the core data
structure—is designed to mitigate a different source of latency, be it network overhead
or computational cost. This demonstrates a key engineering principle: achieving high
performance in interactive systems requires a holistic, multi-layered optimization
approach.

Furthermore, the data that fuels the autocomplete system is a powerful, real-time
reflection of aggregate user intent and emerging market trends. The system is
typically built by analyzing historical search logs to identify popular queries and
their frequencies. This aggregated dataset represents a continuously updated view
of what customers are looking for. By analyzing this data, a business can identify
popular products, discover new trends (e.g., a sudden spike in searches for a new
brand), and find gaps in its product catalog (e.g., a high volume of searches for
a product not currently offered). This elevates the autocomplete system from a
simple UX enhancement to a strategic business intelligence asset. The engineering
implication is that the data pipeline that feeds the autocomplete Trie should also be
integrated with the company’s analytics platforms, turning the search infrastructure
into a source of primary market research.

17.1.3 Engineering Faceted Navigation

Faceted navigation is a critical feature in e-commerce that allows users to progressively
refine a large set of search results by applying filters based on specific product
attributes like brand, color, or price. This section provides a practical guide to
implementing faceted navigation, focusing on the backend mechanisms provided by
modern search engines and the data modeling required to support them.

368

17 User Experience and Future of Search
17.1 Engineering the Search UI

17.1.3 Engineering Faceted Navigation

17.1.3.1 Implementing Facets via Aggregations

The standard industry pattern for implementing faceted search is to leverage the
powerful aggregations (or ”aggs”) feature built into search engines like OpenSearch
and Elasticsearch. The implementation process involves careful data modeling and a
specific query structure.

First, the data must be modeled correctly at index time. This is the most critical
prerequisite. Any field that is intended to be used as a facet, such as color or brand,
must be mapped in the search index with the keyword data type, not text. The
text type is designed for full-text search; it subjects the field’s content to an analysis
process that includes tokenization, lowercasing, and stemming. This process breaks
down the original value, making it impossible to group by the exact, original string.
In contrast, the keyword type stores the field’s value as a single, unanalyzed token,
which is exactly what is needed for the precise grouping required by faceting. This
decision is a foundational architectural act; changing a field’s mapping from text to
keyword necessitates a full re-indexing of the dataset, a costly and complex operation
in a large-scale production environment. Therefore, the design of the index mapping
pre-determines the filtering and navigation capabilities of the user interface. An
engineer who fails to anticipate the need for faceting on a particular field during the
initial design phase creates significant future technical debt.

Second, the search query must be structured to request both the search results and
the facet counts simultaneously. A single API request to the search engine contains
two main parts: a query block, which defines the criteria for matching products, and
an aggs block, which specifies the fields for which to calculate facets. The search
engine first executes the query to find the set of matching documents and then, in a
second step, computes the aggregations over only that result set.

The aggs block can specify different types of aggregations depending on the nature
of the field. The most common types are the terms aggregation, used for discrete,
exact values like brand names or colors, and the range aggregation, used for contin-
uous numerical values like price, which allows for the definition of custom buckets
(e.g., ”0−50”, ”50−100”). The search engine’s response then mirrors this structure,
returning a hits object containing the product results and a separate aggregations

369

17 User Experience and Future of Search
17.1 Engineering the Search UI

17.1.3 Engineering Faceted Navigation

object. This object contains the facet ”buckets,” where each bucket includes a key
(the facet value, e.g., ”Nike”) and a doc count (the number of products in the result
set that have that value).

This doc count is more than just a number; it is a crucial piece of user experience
information that transforms the facet block from a simple filter list into an interactive
navigational tool. A standard filter list might allow a user to click ”Color: Green”
even if no green products match their current search, leading to a frustrating ”zero
results” page. Faceted search, by providing the document count next to each value
(e.g., ”Green (0)”), gives the user critical information before they act. A well-designed
UI will leverage this count to disable or grey out options that would lead to a dead
end, actively guiding the user toward successful refinement paths. This fundamentally
changes the interaction model from one of guessing to one of guided discovery.

17.1.3.2 Hierarchical Faceting

A common challenge in e-commerce is faceting on hierarchical data, such as a
multi-level product category tree (e.g., Clothing ¿ Mens ¿ Shirts). A simple terms
aggregation on a flattened field (e.g., an array containing ”Clothing”, ”Mens”, and
”Shirts”) can show the counts for all categories but loses the parent-child structural
relationship.

The correct architectural solution for this problem in OpenSearch and Elasticsearch
is to use nested objects and nested aggregations. The implementation requires
two key steps. First, during indexing, the category field must be mapped with
type: ”nested”. This instructs the search engine to index each object in the category
array as a separate, hidden Lucene document, which preserves the integrity and
relationships of the fields within that object. Second, the aggregation query must be
structured hierarchically. The entire aggregation is wrapped in a nested aggregation
that specifies the path to the nested field. Within this, a terms aggregation can be
performed on the parent category field. This parent aggregation can then contain a
sub-aggregation that, in turn, performs a terms aggregation on the child category field.
This nested structure allows the search engine to correctly compute the document

370

This is a demonstration PDF.
The full book is available for purchase:

https://testmysearch.com/my-books.html

18 The Agentic E-commerce Engine

18.1 From Search to Autonomy

The preceding parts of this book have charted the evolution of e-commerce search
from a simple lexical retrieval utility to a sophisticated, AI-powered system. We
concluded with the rise of conversational search, powered by RAG, as a revolutionary
paradigm for information access. RAG enables a search system to move beyond a
list of blue links to provide natural, factually-grounded answers to complex user
questions.

However, answering questions is only the penultimate step. The true, final-mile
challenge of e-commerce is not just information access but autonomous action.
This is the domain of Agentic AI, a paradigm that represents the next logical and
far more transformative step in our journey.

This part of the book will explore this new frontier, examining the architectures,
applications, and protocols that are moving e-commerce search beyond a tool for
finding and into a system for doing.

18.2 RAG vs. Agentic AI

To engineer the systems of the future, we must first establish a precise technical
vocabulary.

18 The Agentic E-commerce Engine
18.2 RAG vs. Agentic AI

18.2.1 The Rise of ”Agentic RAG”: RAG as an Agent’s Tool

Agentic AI is an autonomous system.1 Its defining characteristics are its ability
to:

• Understand a high-level goal (e.g., ”Buy me a new running setup”).

• Formulate a multi-step plan to achieve that goal.

• Act on that plan by executing a set of available tools (e.g., calling APIs,
querying databases, or even navigating a web browser).2

An agent is a proactive actor designed to achieve an outcome, not just answer a
question.3 While RAG enhances knowledge, an agent possesses agency.

18.2.1 The Rise of ”Agentic RAG”: RAG as an Agent’s Tool

The ”RAG vs. Agentic AI” debate is resolved by a new, superior architecture that
synthesizes both: Agentic RAG.4 In this paradigm, the RAG system, which was
the final output in our previous chapter, is demoted to become just one of many
tools in an agent’s toolkit.5

This architectural shift is profound. The agent’s core reasoning loop can now
dynamically decide if and when it needs external information to complete a step in
its plan. It can intelligently select which retrieval system to query—for example,
using a vector database for product discovery, a traditional SQL database for order
status, or a web search RAG for competitor pricing. The agent can even refine its
queries iteratively, learning from the results of one RAG query to formulate a better
one.

1What Is Agentic Commerce? (2025) - Salesforce, https://www.salesforce.com/commerce/ai/a
gentic-commerce/

2Understanding AI agent types: A guide to categorizing complexity - Red Hat, November 7, 2025,
https://www.redhat.com/en/blog/understanding-ai-agent-types-simple-complex

3What Are Goal-Based AI Agents? (+ Examples for Marketers) - CleverTap https://clevertap.
com/blog/goal-based-agent-examples/

4RAG vs Agentic RAG: A Comprehensive Guide - Medium, https://medium.com/@datajournal/
rag-vs-agentic-rag-6711cce24037

5Traditional RAG vs. Agentic RAG—Why AI Agents Need Dynamic Knowledge to Get Smarter
https://developer.nvidia.com/blog/traditional-rag-vs-agentic-rag-why-ai-agents-nee
d-dynamic-knowledge-to-get-smarter/

404

18 The Agentic E-commerce Engine
18.3 The Agentic Commerce Paradigm: A New Strategic Landscape

18.3.2 The Economic Opportunity

This architecture allows the agent to dynamically gather knowledge as needed to
inform its autonomous actions.6 The engineering challenge is no longer just ”how to
retrieve context” but ”how to build an agent that reasons about when to retrieve
context, which context to retrieve, and what to do with it afterward.”

This reframes the entire problem from information retrieval to autonomous task
orchestration.

18.3 The Agentic Commerce Paradigm: A New Strategic
Landscape

The shift from conversational search to autonomous agents is not merely a technical
upgrade; it represents a ”seismic shift” in the e-commerce market. For business
leaders, platform architects, and search engineers, understanding the strategic ”why”
is essential. Agentic AI is not just a new feature to be added—it is a new economic
paradigm that will fundamentally change how products are discovered, marketed,
and sold.

18.3.1 AI as the Primary Customer

The most profound shift is the emergence of the AI agent as the primary ”user” of an
e-commerce platform. In the near future, the majority of complex shopping journeys
may not be conducted by a human navigating a human-centric user interface, but
by an autonomous agent acting on that human’s behalf.7 This transition moves
commerce from a human-readable web of clicks, images, and visual merchandising to
a machine-readable web of APIs, structured data, and protocols.

6RAG, AI Agents, and Agentic RAG: An In-Depth Review and Comparative Analysishttps:
//www.digitalocean.com/community/conceptual-articles/rag-ai-agents-agentic-rag-com
parative-analysis

7The agentic commerce opportunity: How AI agents are ushering in a new era for consumers and
merchants - McKinsey https://www.mckinsey.com/capabilities/quantumblack/our-insight
s/the-agentic-commerce-opportunity-how-ai-agents-are-ushering-in-a-new-era-for-c
onsumers-and-merchants

405

18 The Agentic E-commerce Engine
18.3 The Agentic Commerce Paradigm: A New Strategic Landscape

18.3.3 Disintermediation and the ”Background Utility”

18.3.2 The Economic Opportunity

This transformation is not a distant, theoretical event; it has massive, quantifiable
financial implications. Recent research8 from McKinsey forecasts that agentic
commerce could orchestrate up to $1 trillion in revenue in the US B2C retail
market alone by 2030.

This technology is poised to solve what has been called the ”gen AI paradox.”9 While
nearly 80% of companies report using generative AI, a similar number report no
significant bottom-line impact. This is because most (about 90%) of function-specific,
high-value AI use cases remain stuck in pilot mode. Agentic AI is the mechanism to
break this impasse. By combining autonomy, planning, and tool integration, agents
can move generative AI from a reactive, analytic tool to a proactive, automated
collaborator that executes complex business processes end-to-end, unlocking scalable
value.

18.3.3 Disintermediation and the ”Background Utility”

For incumbent retailers, this new paradigm presents an existential threat: disinter-
mediation10. When a user’s personal agent, embedded in a platform like ChatGPT,
Google Gemini, or Perplexity, can autonomously research products, compare prices
across all retailers, and execute a purchase, the direct relationship between the
retailer and the customer is severed.

In this new ecosystem, retailers risk being ”reduced to background utilities”.
The competition for brand loyalty, user experience, and visual merchandising is
replaced by a competition for API performance, data quality, and price. This
commoditization can lead to a devastating loss of direct customer access, weakened

8The agentic commerce opportunity: How AI agents are ushering in a new era for consumers and
merchants - McKinsey https://www.mckinsey.com/capabilities/quantumblack/our-insight
s/the-agentic-commerce-opportunity-how-ai-agents-are-ushering-in-a-new-era-for-c
onsumers-and-merchants

9Seizing the agentic AI advantage - McKinsey https://www.mckinsey.com/capabilities/quantu
mblack/our-insights/seizing-the-agentic-ai-advantage

10Agentic Commerce is Redefining Retail - How to Respond — BCG https://www.bcg.com/publ
ications/2025/agentic-commerce-redefining-retail-how-to-respond

406

18 The Agentic E-commerce Engine
18.4 AI Agents in Production — From Research to Reality

brand loyalty, and immense pressure on high-margin revenue streams like retail
media.

18.3.4 ”Agentic SEO” and Exploitable Biases

This strategic risk is being actively studied. A late 2025 paper, ”What Is Your
AI Agent Buying? Evaluation, Implications and Emerging Questions for Agentic
E-Commerce,” provides the first major academic analysis of agent shopping behavior
in a simulated marketplace11. The findings are a critical warning for the entire
industry.

• Key Finding 1: Agents Have Exploitable Biases. The study causally
demonstrates that AI agents exhibit strong, human-like, but distinct biases.
They show significant position bias, favoring products in the top row. More
strikingly, they are causally influenced by platform signals: agents actively
penalized products with ”sponsored” tags and were strongly positive
toward platform endorsements like an ”Overall Pick” badge. Their sensitivity
to price, ratings, and reviews was ”directionally human-like but varied sharply
in magnitude across models.”

• Key Finding 2: The ”Agentic SEO” Arms Race. The paper’s most
critical finding is that these biases are exploitable. The researchers showed
that a ”seller-side agent” could make ”minor tweaks to product descriptions”
specifically to target the preferences of AI buyer agents. This strategy resulted
in ”substantial market-share gains.” The immediate and inevitable implication
is the dawn of an ”Agent-Side SEO” (ASO) or ”Generative Engine
Optimization” (GEO) arms race. The job of an e-commerce search team
will fundamentally expand. It will no longer be enough to rank results for
human queries. The team must also generate product listings, titles, and
descriptions that are ”agent-discoverable” and ”agent-preferred” to win the
sale before the human user ever sees the options.

11”What Is Your AI Agent Buying? Evaluation, Implications and Emerging Questions for Agentic
E-Commerce,” arXiv: 2508.02630, 2025.

407

18 The Agentic E-commerce Engine
18.4 AI Agents in Production — From Research to Reality
18.4.2 Alibaba’s B2B Agent Ecosystem (Accio & Marco)

18.4 AI Agents in Production — From Research to Reality

The shift to agentic commerce is not just a future projection; it is already in
production at the world’s largest e-commerce platforms, demonstrating massive
business impact and validating the technology’s commercial viability.

18.4.1 Amazon Rufus: The Conversational Marketplace

Launched in 2024, Amazon Rufus exemplifies large-scale deployment. It serves as
a conversational shopping assistant integrated directly into Amazon’s app, handling
queries from broad product discovery (”What do I need for a summer party?”) to
detailed, on-page comparisons (”Compare this QLED TV to the OLED one”).

• Scale & Impact: By 2025, Rufus serves 250 million shoppers and is
credited with generating $10 billion in projected incremental annual
sales. Users who engage with Rufus show 60% higher purchase completion
rates.

• Technical Architecture: Rufus employs a custom LLM trained on Amazon’s
entire product catalog, customer reviews, Q∖&As, and web data. It uses a
RAG architecture to combine its trained knowledge with real-time access to
product catalogs, inventory, pricing, and review data, ensuring its answers are
factually grounded and current.

18.4.2 Alibaba’s B2B Agent Ecosystem (Accio & Marco)

Alibaba has deployed a suite of specialized agents targeting both B2B sourcing and
merchant operations, validating the multi-agent architecture pattern at scale.

• Accio (B2B Sourcing): Launched in 2024, Accio is a conversational agent for
global B2B sourcing. It automates an estimated 70% of traditional sourcing
workflows, including product ideation, supplier vetting, and market research.
Trained on 1 billion product listings, Accio supports five languages and has

408

18 The Agentic E-commerce Engine
18.4 AI Agents in Production — From Research to Reality

18.4.4 Instacart’s Cart Assistant: Bridging Digital and Physical

been shown to boost buyer purchase intent by over 40% compared to
traditional search.

• Marco (Merchant Operations): This platform handles over 60 merchant-
specific tasks, including product listing creation, translation, and marketing.
By 2025, Marco generates nearly 40% of all search-optimized product
descriptions across Alibaba’s marketplaces, handling over 1 billion daily
API invocations. Specialized agents within Marco, like the Intelligent Refund
Agent, deliver measurable operational improvements (15% cost reduction).

18.4.3 Shopify’s Democratized AI (Sidekick & App Ecosystem)

While large retailers build proprietary agents, Shopify’s approach focuses on democ-
ratizing agentic AI for its millions of merchants.

• Merchant-Side Agents: Shopify Magic and Sidekick (https://www.sh
opify.com/magic) act as 24/7 ”business consultants” for merchants, providing
AI assistance for product description generation, email campaigns, and business
analysis.

• Customer-Side Agents: The Shopify App Store features a rich ecosystem of
third-party AI shopping assistants. Rep AI, for example, processes over 17
million shopping sessions and shows a 4X conversion rate (12.3% vs. 3.1%)
for shoppers who engage with its AI chat versus those who do not.

18.4.4 Instacart’s Cart Assistant: Bridging Digital and Physical

Instacart’s Cart Assistant, launched in 2025, represents the convergence of digital
AI agents with physical, in-store shopping experiences.

• Omnichannel Integration: The agent provides AI-powered meal planning
and natural language search across Instacart’s digital apps. Critically, it also
integrates with Caper Carts—smart shopping carts with built-in screens—to
provide conversational guidance in the store.

409

18 The Agentic E-commerce Engine
18.5 Academic Foundations and Core Agent Architectures

18.5.1 Synergizing Reasoning and Acting — ReAct Framework

• User Behavior: Data from Instacart’s AI search shows that over 85% of
users start with open-ended, exploratory questions (e.g., ”What do I
need for taco night?”), validating the user demand for conversational discovery
over keyword search.

It should be noted that the concept of agentic search often refers, in some
implementations, simply to embedding search capabilities into a chat
interface, while in others it represents a transformation of the very nature
of search—introducing proactive behavior and goal-driven interaction.

18.5 Academic Foundations and Core Agent Architectures

The rapid deployment of production agents is built upon a solid foundation of
academic research from 2023-2025 that established the core architectures, benchmarks,
and techniques now used across the industry.

18.5.1 Synergizing Reasoning and Acting — ReAct Framework

The single most influential agent architecture for e-commerce is ReAct, introduced
by Shunyu Yao and colleagues.12

ReAct establishes the foundational Thought-Action-Observation loop. Instead
of just generating an answer, the agent reasons about a plan, acts by calling a tool,
and observes the result, then loops back to reasoning.

A typical ReAct sequence in product search:

• Thought: I should search for wireless headphones within the user’s budget.

• Action: search products(query="wireless headphones", price max=150)

• Observation: Found 150 matching products.

12Yao, S., et al. ”ReAct: Synergizing Reasoning and Acting in Language Models,” ICLR 2023.

410

18 The Agentic E-commerce Engine
18.5 Academic Foundations and Core Agent Architectures

18.5.2 Benchmarking the Agent: WebShop and ShoppingBench

• Thought: This is too many. I should filter by top-rated products to ensure
quality.

• Action: filter by rating(products=150, min rating=4.5)

• Observation: 23 products meet criteria.

• Thought: Now I will check which of these have same-day delivery.

• Action: check delivery options(products=23, delivery speed="same -
day")

• Observation: 7 products available for same-day delivery.

• Final Answer: Here are 7 highly-rated wireless headphones under $150 with
same-day delivery...

This explicit reasoning trace provides transparency, reduces hallucination, and is the
core mechanism that enables agents to execute multi-step plans.

18.5.2 Benchmarking the Agent: WebShop and ShoppingBench

Reproducible benchmarks are essential for measuring agent performance.

• WebShop: This 2022 benchmark created a simulated e-commerce environment
with 1.18 million real products, challenging agents to understand compositional
instructions (”find a red leather sofa under $500”) and navigate a website to
complete a purchase.13

• ShoppingBench: This 2025 benchmark expanded the evaluation to 2.5+
million products and 3,310 diverse instructions across four levels of complexity
(e.g., Products Finder, Knowledge-based search, Multi-products seller, Coupon
& Budget).14 The results from ShoppingBench are sobering: even the state-
of-the-art GPT-4.1 achieves only 48.2% absolute success rate across

13Yao, S., et al. ”WebShop: Towards Scalable Real-World Web Interaction with Grounded Language
Agents,” NeurIPS 2022.

14”ShoppingBench: Real-World Intent-Grounded Shopping Benchmark,” 2025.

411

18 The Agentic E-commerce Engine
18.5 Academic Foundations and Core Agent Architectures

18.5.4 Specialized vs. General Models

all tasks, with performance degrading sharply on multi-constraint problems.
This establishes a clear gap between current capabilities and the needs of a
production-ready agent.

18.5.3 Multi-Agent Systems: Specialized Task Decomposition

Complex shopping scenarios are often too difficult for a single ”monolithic” agent. The
solution is a multi-agent system, where a team of specialized agents collaborates.

• Academic Frameworks: Research like MACRec15, JD.com’s MACDF16

proposes specialized agents (e.g., Manager, User Analyst, ProductSearcher,
Reflector) that work together, mirroring a team of human shopping consultants.

18.5.4 Specialized vs. General Models

While large foundation models (LFM) like GPT-4 are powerful, research shows that
smaller, specialized models can match or exceed their performance on e-commerce
tasks through domain-specific training.

• AGILE Framework: Research in 2024 showed that 7B and 13B parameter
LLMs trained with this reinforcement learning framework could outperform
GPT-4 on product-related Q&A benchmarks.17

• ShoppingBench Results: After fine-tuning, a small Qwen3-4B model (4
billion parameters) achieved a 48.7% success rate on ShoppingBench, matching
GPT-4.1’s 48.2% despite being over 400x smaller.

• Implication: This is critical for production deployment. A 4B parameter
model can be run on-premise for pennies, whereas GPT-4 API calls cost

15Wang, Z., et al. ”MACRec: A Multi-Agent Collaboration Framework for Recommendation,”
February 2024. https://arxiv.org/abs/2402.15235

16Peng et al. “Multi-Agent Cognitive Decision Framework (MACDF) for E-Commerce Search,”
2025, arXiv: 2510.20567. https://arxiv.org/abs/2510.20567

17Feng, P., et al. ”AGILE: A Novel Reinforcement Learning Framework of LLM Agents,” May 2024.
https://arxiv.org/abs/2405.14751]

412

This is a demonstration PDF.
The full book is available for purchase:

https://testmysearch.com/my-books.html

19 Architectural Blueprints for
Challenging Verticals

19.1 Fashion, Apparel, and Beauty

This topic is so broad that it cannot be left unmentioned, yet it is also
impossible to cover all of its aspects. Therefore, we will attempt to
present it from one particular perspective.

Fashion e-commerce is dominated by visual aesthetics and a rich, often subjective,
set of attributes. Its search paradigm is fundamentally different from other sectors.
A search for a ”16GB RAM laptop” is objective and specification-driven, with a
clear set of correct answers. A search for a ”chic summer dress” is subjective,
context-dependent, and emotionally charged.

The goal is not transactional retrieval but discovery and inspiration. The search
engine must act less like a rigid database index and more like a skilled personal
stylist. It must first interpret a user’s ambiguous, often abstract, intent and then
present results with enough visual appeal and confidence to validate a subjective
purchase.

This vertical presents three core architectural challenges:

1. Subjectivity: Key decision criteria include style, fit, material, occasion,
and trends. These are all critical but notoriously difficult to represent in
structured data and are often expressed in ambiguous, natural-language queries
(e.g., ”wedding guest outfit,” ”quiet luxury”).

19 Architectural Blueprints for Challenging Verticals
19.1 Fashion, Apparel, and Beauty
19.1.1 Index and Data Modeling

2. Visual Primacy: A user may not know the term ”trapeze dress” or ”gorpcore
jacket” but can instantly recognize them in a photo. Over 85% of shoppers
report trusting visual information more than text for fashion. This elevates
visual search from a ”nice-to-have” gadget to a first-class, essential discovery
method.

3. Extreme Variant Complexity: A single shirt ”product” can have 5 sizes
and 10 colors, resulting in 50 unique SKUs. The user must be able to search for
”shirt” (the product) but filter by ”Red” and ”Medium” (the SKU attributes).
This product-vs-SKU problem dominates the indexing strategy.

19.1.1 Index and Data Modeling

Fashion catalogs are enormous and dynamic, often containing hundreds of thousands
of SKUs, with thousands of new items added weekly. The underlying product
metadata is frequently the weakest link in the search ecosystem, suffering from
being incomplete, inconsistent, and inaccurate. Data from third-party vendors may
be sparse, and crucial attributes like neckline or sleeve style are often missing.
Without clean, rich, and structured data, faceted filtering and advanced search
cannot function.

19.1.1.1 The Product vs. SKU Indexing Model

Architecturally, you have two primary options:

1. Parent-Child Grouping: In this model, you index ”parent” documents
(the product) and ”child” documents (the SKUs). The parent (product -
id: 123) contains searchable text like ”Classic T-Shirt,” ”soft cotton.” The
children (sku id: 123-R-M) contain filterable attributes like color: "Red"
and size: "M". A query for ”t-shirt” searches the parents. A filter for ”Red”
searches the children and returns their corresponding parents.

420

19 Architectural Blueprints for Challenging Verticals
19.1 Fashion, Apparel, and Beauty
19.1.1 Index and Data Modeling

2. Flat (Denormalized) Model: This is often the more performant and flexible
approach. You index only the SKUs. Each document is a single variant:
”Classic T-Shirt - Red - Medium.”

The latter approach involves the following:

• To solve the product-vs-SKU problem, all attributes from the parent product
(name, description, category) are copied (denormalized) onto every one of its
SKU documents.

• A common group id (e.g., product id: 123) is added to all related SKUs.

• At query time, you perform a field-collapsing or ”grouping” operation on the
product id field. The search engine finds all matching SKUs, groups them by
product id, and returns only the top-ranked SKU for each product.

Architectural Choice — The Flat Model with Field Collapsing is the recom-
mended pattern1. It keeps the index simple (one document type) and allows for
extremely fast filtering, as all data exists on a single document. The ranking function
can then be tuned to select the ”best” SKU (e.g., the one with the hero image, or
the one that is in-stock in the user’s preferred size) to represent the entire group in
the results.

19.1.1.2 Attribute Engineering

Because fashion attributes are subjective, they must be engineered into structured,
hierarchical data. This is a foundational prerequisite for any advanced search.

Objective Attributes:

• brand: "Gucci",

• material: "pima cotton",

1It should be noted that any recommendations cannot be given without understanding the specific
requirements and constraints. What is provided here is a “typical recommendation”.

421

19 Architectural Blueprints for Challenging Verticals
19.1 Fashion, Apparel, and Beauty
19.1.1 Index and Data Modeling

• sleeve length: "short".

Subjective Attributes:

• style: ["boho", "casual", "beachwear"],

• occasion: "evening wear",

• trend: "gorpcore".

These are often multi-valued arrays managed by merchandising teams.

The primary challenge is solving the ”dirty data” problem at scale. Relying on
manual tagging is labor-intensive, expensive, and prone to human error. The modern
solution is AI-driven data enrichment. This involves using computer vision
models to analyze product images, automatically generating a rich and consistent
set of tags for visual attributes like color, pattern, neckline, sleeve length, and
even abstract style.

The ”Color” Problem — A user searching for ”red” should find items named
”Crimson,” ”Merlot,” and ”Ruby.” The index must support this by modeling color as
a nested object or a set of related fields:

• color name: Crimson (The specific merchandising name)

• color family: Red (The filterable parent)

• color swatch hex: #DC143C (For rendering the visual facet)

19.1.1.3 ”Shop the Look” Modeling

Fashion is sold as outfits, not items. ”Shop the Look” features answer the user’s
implicit question of ”how do I wear this?” and can dramatically increase Average
Order Value (AOV).

To power this, product relationships must be stored in the index. This is typically
an array of related product ids or sku ids on the product document.

422

19 Architectural Blueprints for Challenging Verticals
19.1 Fashion, Apparel, and Beauty

19.1.2 Query Processing — Solving the Vocabulary Gap

"shop the look ids": [’sku pants 456’, ’sku shoes 789’, ’sku bag 001’]

This allows a Product Detail Page (PDP) to query the search index for a handful of
IDs to instantly build a ”Complete the Outfit” carousel.

A more advanced approach involves using a knowledge graph to model true stylistic
compatibility. Instead of just storing co-purchase data, the graph understands that
a ”boho handbag” is stylistically compatible with ”suede ankle boots,” allowing for
more intelligent and stylist-like recommendations.

19.1.2 Query Processing — Solving the Vocabulary Gap

The most significant query challenge is the ”vocabulary gap”—the persistent
mismatch between the language customers use (”sneakers,” ”ladies pregnancy dress”)
and the technical or regional jargon in the catalog (”trainers,” ”women’s maternity
gown”). This gap is a primary driver of revenue loss, leading to zero-result pages.

This gap appears in several forms:

• Lexical. Synonyms (”hoodie” vs. ”sweatshirt”) and regionalisms.

• Syntactic. Word order is critical. A ”shirt dress” is a type of dress, while a
”dress shirt” is a type of shirt. A simple keyword match will fail here.

• Intent-Based. A query for ”flowy summer dress” or ”outfit for a beach
vacation” is not a keyword search. It is a set of desired attributes and a use
case.

19.1.2.1 Semantic and Stylistic NLP

To solve this, the parser must deconstruct intent using domain-specific entity extrac-
tion:

Query — ”flowy summer dress”

423

19 Architectural Blueprints for Challenging Verticals
19.1 Fashion, Apparel, and Beauty

19.1.3 The ”Search What I See” Pipeline

Parse:

• flowy -> maps to style: ’flowy’

• summer -> maps to collection: ’summer 2026’ OR season: ’summer’

• dress -> maps to category: ’dresses’

Result — The query becomes a structured search: q=*:* with filters:

fq=category:"dresses"&fq=style:"flowy"&fq=season:"summer".

The modern solution for the vocabulary gap is semantic search. This approach
uses Natural Language Processing (NLP) to understand the meaning and intent
behind a query, not just its keywords. Both queries and product data are converted
into numerical vector embeddings. The search engine then finds products whose
vectors are ”closest” to the query’s vector, allowing it to understand that ”wireless
headphones” and ”Bluetooth earbuds” are conceptually similar even if they share no
keywords.

19.1.2.2 Aggressive Synonym Management

Semantic search does not replace the need for synonyms, especially given the speed
of fashion. Trends (”shacket,” ”cottagecore,” ”Barbiecore”) emerge and die in a
single season. The synonym list cannot be a static file managed by engineers. The
best practice is providing the merchandising team with a Synonym Management
UI where they can update the search engine’s synonym list in near real-time, often
via an API, without requiring a full re-index.

19.1.3 The ”Search What I See” Pipeline

Given the visual primacy of fashion, allowing users to search with an image bridges
the vocabulary gap entirely. Leading retailers like ASOS (”Style Match”) have
pioneered this, seeing significant lifts in AOV (approx. 20%) and revenue. It is a
critical discovery tool.

424

19 Architectural Blueprints for Challenging Verticals
19.1 Fashion, Apparel, and Beauty
19.1.4 Ranking and Personalization

This component should be organized as a separate microservice that converts an
image into a set of searchable product IDs.

19.1.3.1 The Visual Embedding Pipeline in Practice

1. User Input: The user uploads an image of a fashion item (e.g., from their
camera roll or a screenshot).

2. Object Detection (Optional): If the source image is complex (a photo of
a person on the street), an object detection model like YOLO (You Only
Look Once) is first used to identify and crop the specific fashion item of
interest (e.g., isolating the handbag from the rest of the image).

3. Embedding Generation: The cropped image is then passed through a pre-
trained Convolutional Neural Network (CNN), such as a model from
the EfficientNet or ResNet family. This process uses transfer learning: a
model pre-trained on a massive, general dataset (like ImageNet) is fine-tuned
on a domain-specific dataset of fashion items. The model’s final layers are used
to generate a high-dimensional vector embedding (e.g., a 512-dimension array
of floats)—a numerical ”fingerprint” of the item’s visual characteristics.

4. Similarity Search: This query vector is then used to search against a pre-
computed vector index (e.g., using Faiss, ScaNN, or a vector engine’s built-in
HNSW index). An Approximate Nearest Neighbor (k-NN) search is
performed to retrieve the product images whose embeddings are mathematically
closest (e.g., by cosine similarity) to the query image’s embedding. These are
returned as the most visually similar items.

However, it is important to keep in mind that once such a resource-intensive feature
is made available to a broad anonymous audience, one must be prepared for the
possibility that it may be misused or used excessively, which can potentially lead to a
significant increase in maintenance and support costs. On the other hand, introducing
mandatory registration and usage rate controls may reduce its attractiveness to
users.

425

19 Architectural Blueprints for Challenging Verticals
19.1 Fashion, Apparel, and Beauty

19.1.5 Key UX Integrations

19.1.4 Ranking and Personalization

In fashion, a ”relevant” result that is out-of-stock or in the wrong style is useless.
Ranking must be heavily weighted by business signals and user affinity.

• Trend & Newness. The ranking function must be predictive, not just
reactive. Consumers engage in ”aspirational shopping,” searching for ”spring
dresses” in February. If the ranking model relies only on historical data, it will
incorrectly boost the ”winter parkas” that sold well in January, completely
missing the user’s shift in intent.

• Newness. A decay function on the date added field.

• Trend Score. A views last 7 days or purchases last 24 hours field, in-
gested from an analytics pipeline, is far more valuable than 3-month-old sales
data.

• Personalization (Affinity Boosting). Track the user’s click/purchase
history to build an affinity profile. If a user frequently buys ”Nike,” consider
applying a boost(brand: "Nike") to all queries. This strategy is also key
to reducing return rates. If a user’s profile or purchase history shows a strong
affinity for size: "Medium", all ranking should be biased.

19.1.5 Key UX Integrations

The index architecture is designed to directly power these key front-end components:

• Visual Search Button. A camera icon in the search bar that initiates the
visual search pipeline.

• Visual Swatch Facets. When the user facets on ”Color,” the front-end must
not render a text list. It should render a grid of visual squares by reading the
color swatch hex field from the facet results. The click handler then filters
on the associated color family.

426

19 Architectural Blueprints for Challenging Verticals
19.2 Grocery and Consumables

• ”Shop by Size” / ”In-Stock Only” Toggles. These must be the most
prominent filters. The ”Shop by Size” filter should ideally be pre-selected with
the user’s affinity size from their personalization profile.

• Virtual Try-On (VTO) Toggles. For beauty, a ”Try it On” button that
activates the AR experience.

• Concern & Ingredient Filters. For beauty, extensive and granular facets
for ”Shop by Concern” (e.g., Acne, Dryness) and ”Filter by Ingredient.”

19.2 Grocery and Consumables

This topic is so broad that it cannot be left unmentioned, yet it is also
impossible to cover all of its aspects. Therefore, we will attempt to
present it from one particular perspective.

The search experience for online grocery is defined by a unique set of user behaviors
and data characteristics that distinguish it from general retail. While general e-
commerce is often a platform for discovery and consideration (e.g., browsing for a
new dress or furniture), grocery search is overwhelmingly a utility for replenishment
and mission execution.

The user’s goal is to fill a large digital basket with dozens of low-cost, frequently
purchased items as efficiently as possible. This fundamental difference in user
behavior—the ”mission-based” intent—is the foundational prerequisite for building
a successful grocery search platform.

The architectural challenges stem from this specific nature of the products and the
behavior of the shoppers.

• Core Challenge 1: Unit-Based Queries. Users don’t just buy ”beef”; they
buy ”2 lbs of ground beef.” They don’t buy ”milk”; they buy a ”half gallon
of 2% milk.” The query parser and index must be able to understand and act
on these specific quantities and units. Of course, one might note that users
get used to simply searching for “beef” and then selecting the desired quantity.

427

19 Architectural Blueprints for Challenging Verticals
19.2 Grocery and Consumables

19.2.1 Redefining Success Metrics

However, products are often packaged in different sizes, and the customer may
remember that last time they bought exactly 2 lb, so they’ll type in “2 lb.”
Users don’t know what the search system can or cannot do — they just act in
the way that’s most convenient for them.

• Core Challenge 2: Frequent Reordering. Unlike fashion or electronics,
grocery shopping is a replenishment-driven task. Users build large, repeat
baskets of the same staple items. Data shows there is twice as much item
overlap between successive online shopping trips compared to in-store. This
makes purchase history the single most important personalization signal.

• Core Challenge 3: Inventory & Substitutions. The inventory is dynamic
and perishable. An item being in stock at the correct local store is a binary filter
for success. Handling out-of-stock items by suggesting relevant substitutions
(e.g., a different brand of milk, organic vs. conventional bananas) is a critical
and expected part of the user experience.

To address these challenges, the architecture must prioritize personalization, real-time
inventory, and a sophisticated query parser that understands how people buy food.

It may be worth considering a special type of catalog search where the query is
the customer’s last order, and the results are the items most similar to that order.
Matches with items from the previous order should be displayed in separate groups.
The user should be able to easily add all fully matched recommendations to the cart
at once and review or confirm recommendations with partial matches. This is quite
a non-trivial solution from a UI perspective and heavily depends on the specifics of
the grocery online store.

19.2.1 Redefining Success Metrics

This mission-based intent requires a complete re-evaluation of how success is mea-
sured. In discovery-oriented e-commerce, high engagement (many clicks, long session
duration) can be a positive signal. In grocery, these same signals often indicate
friction and failure.

428

This is a demonstration PDF.
The full book is available for purchase:

https://testmysearch.com/my-books.html

20 Securing the Search Platform

20.1 The E-commerce Search Attack Surface

In the previous chapters, we examined the search system as a complex mechanism
for understanding user intent and ranking products. Now, we must look at it from
another perspective: as a critical yet vulnerable business asset. As search evolves
from a simple keyword-matching utility to a sophisticated, AI-driven conversational
and personalization engine, its attack surface expands significantly. Every new
component—from the autocomplete API to machine learning models for ranking
and LLM-based conversational agents—presents a potential entry point for malicious
actors.

Designing a secure search system is a constant exercise in balancing a fundamental
trilemma: security, cost, and user experience. Overly aggressive bot detection can
block legitimate users, damaging conversion. Resource-intensive security measures
increase operational costs, especially with pay-as-you-go cloud services. On the other
hand, weak defenses expose the business to direct financial and reputational risks.
The architect’s role is not to maximize one of these aspects at the expense of the
others, but to find the optimal balance that aligns with the company’s business goals
and risk profile.

The threats discussed in this chapter—automated data extraction, economic at-
tacks, and information leakage—are not isolated problems. They represent points
on a single, interconnected threat landscape. They are often carried out by the
same actors (automated bots) and can be countered with a holistic, multi-layered
architectural strategy. For example, bots are used for scraping (data extraction),
but also to overload systems, leading to economic denial of service (EDoS). The

20 Securing the Search Platform
20.2 Threat Modeling for E-commerce Search

20.2.1 Applying the STRIDE Framework

same automated scripts can be used to probe the autocomplete API for information
leakage. Consequently, defending against one type of bot (e.g., to prevent scrap-
ing) provides partial defense against other threats as well. The architect must see
this convergence and design a fundamental layer of defense that addresses the root
cause—unauthenticated, automated traffic—before moving on to combat specific
malicious intents. Instead of disparate solutions, this chapter proposes a unified
defensive strategy.

20.2 Threat Modeling for E-commerce Search

The modern approach to security requires a shift from reactive, post-incident re-
sponses to a proactive discipline integrated into the product development lifecycle.
Threat modeling is the fundamental practice that formalizes this shift. It is a struc-
tured process by which potential threats, vulnerabilities, and missing safeguards are
identified and enumerated early, allowing mitigation efforts to be prioritized.

20.2.1 Applying the STRIDE Framework

STRIDE is an established methodology developed by Microsoft that serves as a
systematic tool for identifying potential threats in a software architecture. The
name is an acronym for six threat categories. Applying this framework to a search
microservice architecture allows for a systematic analysis of vulnerabilities.

• Spoofing. An attacker illegitimately assumes the identity of another user or
system. In the context of search, this could be an attacker using a stolen session
cookie to access another user’s personalized search history, or a competitor
masking their scraper as a Google search bot to avoid being blocked.

• Tampering. The unauthorized modification of data. An example would be
an attacker modifying API request parameters, such as manipulating a price
filter from $price:[10, 50] to $price:[* TO *], to cause an error or bypass
business logic.

478

20 Securing the Search Platform
20.3 Scraping, Bots, and Business Logic Abuse

• Repudiation. The inability to prove that an action was taken. If an attacker
performs scraping or vulnerability probing and the system lacks sufficient
logging, it becomes impossible to attribute these actions to a specific IP
address or account.

• Information Disclosure. The unauthorized access to data. This is one of the
primary threats to search systems. It includes obvious leaks through verbose
error messages as well as more subtle forms, such as information leakage via
feedback loops, which we will cover in detail.

• Denial of Service. Making the system unavailable to legitimate users. This
category includes traditional DoS attacks as well as the more sophisticated
economic attacks (EDoS) that will be dedicated a separate section.

• Elevation of Privilege. Gaining higher-level access rights than permitted.
An attacker might exploit a vulnerability in the indexing API to inject a
malicious document that, when processed, grants access to the underlying
search cluster or administrative functions.

20.2.2 Introduction to LINDDUN for Privacy Threats

To prepare for a deep analysis of privacy issues, it is important to mention the
LINDDUN framework, which is analogous to STRIDE but focused on privacy.
Its name is an acronym for seven threat categories: Linking, Identifying, Non-
repudiation, Detecting, Data Disclosure, Unawareness, Non-compliance. This
highlights that security and privacy are related but distinct disciplines, each requiring
its own specialized analysis.

Applying the abstract STRIDE model to the specific components of a search archi-
tecture turns it into a practical and actionable tool.

479

20 Securing the Search Platform
20.3 Scraping, Bots, and Business Logic Abuse

20.3.2 The Multi-Layered Defensive Architecture (Defense-in-Depth)

20.3 Scraping, Bots, and Business Logic Abuse

Automated threats, particularly scraping, represent one of the most common and
economically significant problems for e-commerce platforms. These bot-driven
attacks are aimed at the mass extraction of valuable data, which can lead to a loss
of competitive advantage, reduced revenue, and a degraded user experience.

20.3.1 Defining the Threat: Scraping Scenarios

Scraping, as classified by the OWASP Automated Threat OAT-011, is the automated
collection of a web application’s content and data for use elsewhere. For e-commerce,
the primary motives for scraping include:

• Competitive Intelligence. Automated monitoring of prices, product assort-
ments, and stock levels by competitors is a primary driver. This allows them to
dynamically adjust their own prices to remain competitive, directly impacting
margins and market share.

• Content Theft. Unique product descriptions, high-quality images, and user
reviews are valuable assets. Attackers steal this content to populate their own
sites, free-riding on others’ efforts and harming the original site’s SEO due to
duplicate content.

• Resale and Scalping. Bots are used to automatically monitor for the
availability of limited-stock items (e.g., limited-edition sneakers, game consoles)
to purchase them instantly for subsequent resale at inflated prices.

20.3.2 The Multi-Layered Defensive Architecture (Defense-in-Depth)

An effective fight against automated threats requires a multi-layered defensive
strategy, also known as ”Defense-in-Depth.” This architectural pattern organizes
defensive measures into several layers, from the network edge to the application logic,
providing redundancy and resilience. This approach not only enhances security but
also allows for managing the trade-off between detection accuracy, performance, and

480

20 Securing the Search Platform
20.3 Scraping, Bots, and Business Logic Abuse

20.3.2 The Multi-Layered Defensive Architecture (Defense-in-Depth)

user experience. The outer, cruder layers (e.g., IP blocking) are low-cost and create
no user friction, but their accuracy is low. The inner, more complex layers (e.g.,
behavioral analysis) have high accuracy but can introduce latency. A well-designed
architecture uses the outer layers to filter obvious bots, reducing the load on the
more expensive inner layers and minimizing inconvenience for legitimate users.

20.3.2.1 Layer 1: The Network Edge — IP and Network Analysis

This is the first line of defense, designed to block the most obvious and low-level
attacks.

• IP Reputation and Blacklists. Using threat intelligence feeds to block
requests from IP addresses known to belong to malicious networks, data centers,
anonymous proxies, and VPN services.

• Geofencing. Blocking traffic from geographic regions where the company does
not do business or from which an anomalously high level of malicious activity
is observed.

• TLS/SSL Fingerprinting (JA3/JA4). Analyzing the parameters of the
TLS handshake to identify signatures characteristic of common scraping libraries
(e.g., Python’s requests), which differ from standard browsers. This allows
for the detection of automated clients at the connection-establishment level.

20.3.2.2 Layer 2: The Gateway — Rate Limiting and Protocol Validation

This layer focuses on protocol-level behavior and is applied at the API gateway or
load balancer.

• Granular Rate Limiting. Instead of simply limiting by IP address, which
can block legitimate users behind a NAT, more granular limits are applied:
by user ID, API key, or session. This helps prevent abuse by a single entity
without affecting others.

481

20 Securing the Search Platform
20.3 Scraping, Bots, and Business Logic Abuse

20.3.2 The Multi-Layered Defensive Architecture (Defense-in-Depth)

• Web Application Firewall (WAF). A WAF inspects incoming HTTP
requests for protocol compliance and known attack patterns. In the context of
combating scraping, a WAF is used to validate HTTP headers (e.g., checking
for the presence and correctness of User-Agent, Referer, Accept-Language)
and block requests with anomalous or incomplete header sets characteristic of
simple scripts.

20.3.2.3 Layer 3: The Application — Active Challenges and Behavioral Analysis

This layer includes more sophisticated methods that require client interaction and
behavior analysis.

• CAPTCHA and JavaScript Challenges. Presenting suspicious traffic with
tasks that are easy for a human but difficult for a bot (however, LLMs challenge
this). This includes classic CAPTCHAs (e.g., reCAPTCHA v2) and more
modern ”invisible” challenges (reCAPTCHA v3) that analyze user behavior in
the background. JavaScript challenges are also used, requiring the client to
execute code, which weeds out simple bots incapable of doing so.

• Browser and Device Fingerprinting. Collecting a unique signature based
on multiple browser and device attributes: installed fonts, plugins, screen
resolution, WebGL and Canvas rendering parameters, OS version, etc. This
allows for the detection of headless browsers (e.g., Puppeteer, Selenium) and
other automation tools that cannot fully mimic a real user’s environment.

• Behavioral Biometrics. The most advanced layer of defense. It analyzes
dynamic patterns of user interaction with the interface: mouse movement
trajectories, typing speed and rhythm, page scrolling behavior. Bots, even
the most sophisticated ones, exhibit either unnaturally ”perfect” and linear
behavior or, conversely, chaotic behavior, which allows them to be distinguished
from living people.

• Honeypots. Placing traps on the page that are invisible to regular users (e.g.,
links with display: none or visibility: hidden styles). Only automated

482

20 Securing the Search Platform
20.4 Search Query Injection and Parameter Tampering

20.4.1 Attack Scenarios

scrapers parsing the HTML code directly will follow such links, allowing for
their immediate identification and blocking.

• Machine Learning-Based Anomaly Detection. Beyond static rules,
integrate ML models to detect evolving bot patterns in search traffic. For
example, train models on features like query frequency, session duration, and
navigation paths to flag anomalies. A practical reminder for search engineers:
Use libraries like scikit-learn to prototype such models, ensuring they process
logs in near-real-time to minimize false positives that could frustrate users.
This layer is crucial as bots increasingly use AI to mimic human behavior, per
OWASP guidelines.

20.4 Search Query Injection and Parameter Tampering

While scraping and bots attack the search platform from the outside, query injection
attacks attempt to corrupt it from the inside. This attack vector involves an adversary
manipulating the search query’s parameters to bypass business logic, cause a system
error, or, in the worst case, gain unauthorized access to data. This is a direct
exploitation of trust between the web application frontend and the search API
backend.

These attacks often stem from a common architectural flaw: insecurely concate-
nating user-controlled parameters directly into a search engine’s native query
syntax (e.g., Lucene, Elasticsearch Query DSL).

20.4.1 Attack Scenarios

The first type of attack is Filter Bypassing and Information Disclosure. This is the
most common and impactful scenario in e-commerce. An attacker manipulates filter
parameters to view data they should not be able to access.

For example, a typical search URL might look like

483

20 Securing the Search Platform
20.4 Search Query Injection and Parameter Tampering

20.4.2 Defensive Measures: Parameterization and Deny-Lists

.../search?q=sofa&filter.published=true

An attacker might try to remove the parameter, or send filter.published=false
or filter.published=*. If the backend doesn’t enforce this filter server-side, the
attacker could see unpublished products, internal test items, or items with zeroed-
out prices. Public bug bounty reports on platforms like HackerOne are filled with
examples of attackers bypassing such filters on live e-commerce sites.

An internal admin search might be exposed on an API, like

.../api/search?q=user&filter.group=customer

An attacker could tamper with this to filter.group=admin, potentially leaking
other admin user data.

The next type is ”Query-Based Denial of Service (DoS).” Unlike EDoS, which uses
volume, this attack uses a single, maliciously crafted query to exhaust resources.
Search engines like Elasticsearch and Solr expose powerful (and expensive) query
features.

For example, if the search API allows users to input raw query syntax, an attacker
could send a query like q=* (a full wildcard) or q=, and rows=1000000. This forces
the search engine to scan every term in every document, potentially locking up the
CPU and crashing the search cluster with a single request.

In some cases, Remote Code Execution (RCE) can be relevant. While modern
search engines are much more secure, older or misconfigured versions had critical
vulnerabilities.

The famous historical example is CVE-2015-1427, a vulnerability in older Elastic-
search versions. It allowed an attacker to use the Groovy scripting engine (which
was enabled by default) to craft a search query that would execute arbitrary code on
the server, leading to a full system takeover. This serves as a powerful lesson: never
allow user input to be executed as a script or query without rigorous sanitization
and sandboxing.

484

20 Securing the Search Platform
20.5 ”Denial of Wallet” and Resource Exhaustion

20.5.1 From DoS to EDoS

20.4.2 Defensive Measures: Parameterization and Deny-Lists

The following recommendations can be given here:

1. Never Trust User Input. Treat all parameters from the user (query text,
filters, sorting, pagination) as untrusted.

2. Use Parameterized Queries (The ”Prepared Statement” of Search):
Never build query strings by hand (e.g., query string = "product name:" +
user query). Instead, use the search engine’s client library to build a query
object or template, and pass user input in as values (parameters). This ensures
that user input is always treated as text to be searched for, not as query logic
to be executed.

3. Strict Validation and Deny-Lists: Maintain a strict allow-list for filterable
fields, sortable fields, and operators. Any parameter that does not match the
allow-list should be rejected. For the query string itself, deny known dangerous
characters or patterns, such as leading wildcards, complex regex patterns, or
query-parser keywords like AND, OR, TO.

20.5 ”Denial of Wallet” and Resource Exhaustion

With the advent of cloud computing and pay-per-use models, the threat landscape
has shifted. Attackers can now inflict significant financial damage without causing a
complete system outage. This class of attacks, targeting the economic sustainability
of a service, is particularly relevant for modern search systems that use expensive
machine learning and LLM-based APIs.

20.5.1 From DoS to EDoS

A traditional Denial of Service (DoS) attack aims to make a service unavailable
to legitimate users by exhausting resources such as network bandwidth, CPU time,
or memory. However, in cloud environments where resources can scale automatically,

485

20 Securing the Search Platform
20.5 ”Denial of Wallet” and Resource Exhaustion

20.5.3 Granular API Rate Limiting

this approach may not lead to an outage. Instead, it results in a different, more
insidious type of attack: Economic Denial of Service (EDoS), also known as
Denial of Wallet (DoW).

The essence of EDoS is the exploitation of cloud elasticity. An attacker generates a
stream of requests that appear legitimate enough to trigger auto-scaling mechanisms.
The system begins to provision more and more expensive resources (VMs, containers,
API calls), leading to a skyrocketing cloud services bill. The attacker’s goal is not
to ”crash” the service, but to drive its operational costs to an unacceptable level,
inflicting direct financial damage on the company.

20.5.2 The LLM Attack Vector — Unbounded Consumption

Resource-intensive search functions, such as semantic search, RAG-based conversa-
tional search, and LLM-generated suggestions, are ideal targets for EDoS attacks.
OWASP, in its ”Top 10 for LLM Applications” list, formally defines this vulnerability
as ”Unbounded Consumption.” Attackers can send a large number of syntac-
tically correct but specially crafted queries that maximize the computational load.
For example, these could be long, complex queries to a RAG system that require
the retrieval and processing of a large number of documents, leading to massive and
unexpected bills from cloud or API providers.

20.5.3 Granular API Rate Limiting

Rate Limiting is the first and most important line of defense against any volume-
based attack. The implementation should be multi-layered:

• Global/API-Level. A general limit on the number of requests to the entire
service to protect against large-scale attacks.

• User/Key-Level. Differentiated limits for authenticated users, possibly based
on subscription tiers (e.g., free vs. premium). This allows for different service
levels and API monetization.

486

This is a demonstration PDF.
The full book is available for purchase:

https://testmysearch.com/my-books.html

21 Recommended Reading

While this book aims to be comprehensive, the field of search is vast and deep.
Building true mastery requires familiarity with the foundational works that have
shaped the discipline. The existing literature can be effectively categorized into three
essential pillars of knowledge. Fluency in all three is crucial for any serious search
professional.

21.1 Foundational Information Retrieval (IR) Theory

These seminal academic texts provide the mathematical and algorithmic bedrock
of search, explaining the ”first principles” behind indexing, scoring, and evaluation.
Understanding this theory is essential for diagnosing problems and making informed
architectural decisions.

The first one is ”Introduction to Information Retrieval” by Christopher D.
Manning, Prabhakar Raghavan, and Hinrich Schütze. This is the definitive com-
puter science textbook on IR. It offers rigorous treatments of index construction,
compression, vector space models, probabilistic models, link analysis, and evaluation
methodologies. It provides the core theoretical foundation for understanding how
search engines work at their lowest levels.

The second book in this pillar is ”Information Retrieval in Practice” by W. Bruce
Croft, Donald Metzler, and Trevor Strohman. This book complements Manning et al.
by focusing more on the architecture and practical implementation of search engine
components. It covers crawling, text processing, index creation, query processing,
various ranking models (including BM25, language models, and Learning to Rank

21 Recommended Reading
21.3 Modern Relevance Engineering Practice

basics), and evaluation. It serves as an excellent bridge between pure theory and
system design.

Unlike books focused on UI, the underlying theory here doesn’t really go stale. The
foundational concepts remain unchanged, and most modern university courses still
rely heavily on these time-tested approaches. That said, every year something new
emerges that’s worth adding to the core theoretical framework, but the foundational
things remain the same.

Familiarity with these texts ensures that your practical implementations are grounded
in sound theoretical principles.

21.2 User Experience (UX) and Interface Design

Search is ultimately a human-computer interaction problem. Understanding how
users formulate queries, interpret results, and navigate information spaces is critical
for designing effective interfaces. This pillar provides the ”human context” for our
technical work.

Unfortunately, all books on the topic are a bit outdated.

”Search User Interfaces” by Marti A. Hearst was released in 2009 and while many
concepts are still relevant, things dramatically changed since then. The book focuses
specifically on the user interface layer of search. It covers models of information-
seeking behavior, query specification techniques (including autocomplete), results
visualization, query reformulation aids, and advanced interaction paradigms like
faceted navigation and personalized interfaces.

”Designing Search: UX Strategies for eCommerce Success” by Greg Nudelman
is also pretty old. It was published in 2011. Many concepts from the book are still
relevant. The book is practitioner-focused. It offers a wealth of actionable design
patterns, usability principles, and concrete examples specifically tailored for the e-
commerce domain. It covers everything from the search box and autocomplete design
to SERP layouts, faceted navigation best practices, and mobile search considerations,
directly complementing the engineering focus of this book.

492

21 Recommended Reading
21.4 Mentioned and recommended Papers, Blogs, Books

21.3 Modern Relevance Engineering Practice

This pillar represents the rapidly evolving landscape of applying search technologies
and machine learning in real-world systems, focusing on practical implementation,
tuning, and operation.

”Relevant Search: With applications for Solr and Elasticsearch” by Doug
Turnbull and John Berryman is a great source of knowledge. This foundational
practitioner’s guide treats the search engine as a programmable relevance framework.
It provides a systematic approach to debugging relevance issues, mastering text
analysis, shaping the scoring function through techniques like boosting and function
queries, implementing A/B testing, and incorporating signals like personalization.
It’s an invaluable resource for anyone working hands-on with open-source search
engines.

”AI-Powered Search” by Trey Grainger, Doug Turnbull, and Max Irwin is the
most direct contemporary work, diving deep into the application of modern AI
techniques to search. It offers detailed coverage of semantic search with vector
embeddings, knowledge graphs, advanced Learning to Rank (LTR), personalized
search, query understanding, and conversational search using Retrieval-Augmented
Generation (RAG). It represents the state-of-the-art in applying machine learning to
solve complex relevance problems.

These books provide the practical ”implementation playbook” for building and tuning
intelligent search systems today.

21.4 Mentioned and recommended Papers, Blogs, Books

• Zhaochun Ren, Xiangnan He, Dawei Yin and Maarten de Rijke.
Information Discovery in E-commerce. 2025. https://arxiv.org/pdf/
2410.05763v3

• Doug Turnbull and John Berryman. Relevant Search: With applica-
tions for Solr and Elasticsearch. 2016. https://a.co/d/iMVnqTT

493

21 Recommended Reading
21.4 Mentioned and recommended Papers, Blogs, Books

• Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.
Introduction to Information Retrieval. 2008. https://nlp.stanford.e
du/IR-book/

• W. Bruce Croft, Donald Metzler, and Trevor Strohman. Search
Engines: Information Retrieval in Practice. 2009. https://ciir.cs.
umass.edu/irbook/

• Ido Guy and Victor Leve. Challenges and research opportunities in
eCommerce search and recommendations. 2020. https://www.amaz
on.science/publications/challenges-and-research-opportunities-i
n-ecommerce-search-and-recommendations

• Jing Yao, Qingyao Ai, Yifan Liu, Min Yang, Ji-Rong Wen, Haifeng
Wang, Chua Tat-Seng, and Zhumin Chen. Rethinking E-Commerce
Search. 2023. https://arxiv.org/abs/2312.03217

• Jun Xu, Xiangsheng Huang, Ji-Rong Wen, and Zhicheng Dou. Infor-
mation Discovery in e-Commerce. 2024. https://arxiv.org/html/241
0.05763v1

• Anh Tuan Tran and Van Vinh Nguyen. H1: Hybrid Retrieval System
for Product Search in E-Commerce. 2025. https://www.researchgate
.net/publication/388928810_H1_Hybrid_Retrieval_System_for_Produc
t_Search_in_E-Commerce

• Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Informa-
tion Retrieval. 2011. https://a.co/d/2xGDyGv

• Stefano Ceri, Alessandro Bozzon, Marco Brambilla, Emanuele Della
Valle, Piero Fraternali, and Silvia Quarteroni. Web Information
Retrieval. 2013. https://link.springer.com/book/10.1007/978-3-642
-39314-3

• Muhammad Shoaib and Muhammad Dawood. An intelligent ap-
proach to design of E-Commerce metasearch and ranking system.

494

21 Recommended Reading
21.4 Mentioned and recommended Papers, Blogs, Books

2018. https://www.sciencedirect.com/science/article/pii/S1319157
817303440

• Aixin Sun, Chiew Tong Lau, and Dion Hoe-Lian Goh. Bridging the
Gap Between Information Seeking and Product Search Systems. 2024.
https://dl.acm.org/doi/10.1145/3687273.3687293

• Rauf Aliev. Inside Apache Solr and Lucene. https://testmysearch.c
om/books/inside-solr.html

• Trey Grainger, Doug Turnbull, and Max Irwin. AI-Powered Search.
2025. https://www.oreilly.com/library/view/ai-powered-search/9781
617296970/

• Vineeth Mohan. Elasticsearch Blueprints. 2015. https://a.co/d/6sy
dDV7

• Dikshant Shahi. Apache Solr: A Practical Approach to Enterprise
Search. https://www.apress.com/gp/book/9781484210703

• The ABCs of E-Commerce Search: A Guide to Essential E-Commerce
Search Features. https://www.easyask.com/wp-content/uploads/2014/
09/ABCs-of-eCommerce-Search-White-Paper.pdf

• Retrieval Augmented Spelling Correction for E-Commerce Applica-
tions. ACL Anthology, 2024. https://aclanthology.org/2024.emnlp-ind
ustry.7/

• Yipeng Zhang et al.. LESER: Learning to Expand via Search Engine-
feedback Reinforcement in e-Commerce. 2025. https://arxiv.org/ht
ml/2509.05570v1

• Sanjay Agrawal, Srujana Merugu, and Vivek Sembium. Enhancing E-
commerce Product Search through Reinforcement Learning-Powered
Query Reformulation. In Proceedings of the 32nd ACM International
Conference on Information and Knowledge Management (CIKM ’23), 2023.
https://dl.acm.org/doi/10.1145/3583780.3615474

495

21 Recommended Reading
21.4 Mentioned and recommended Papers, Blogs, Books

• Bing He et al.. Hierarchical Query Classification in E-commerce
Search. 2024. https://arxiv.org/abs/2403.06021

• Kundan Kumar, Manoj Kumar, Anirban Bhowmick, Ranjan Sinha.
Locale-Aware Product Type Prediction for E-commerce Search
Queries. 2024. https://www.amazon.science/publications/locale
-aware-product-type-prediction-for-e-commerce-search-queries

• Rohan Kumar et al.. Reinforcement Learning for Adversarial Query
Generation to Enhance Relevance in Cold-Start Product Search.
2025. https://aclanthology.org/2025.acl-industry.91/

• An P. Nguyen et al.. Handling Negative Queries in Product Search.
2025. https://aclanthology.org/2025.coling-industry.49/

• Navid Mehrdad, Vishal Rathi, and Sravanthi Rajanala. Session
Context Embedding for Intent Understanding in Product Search.
2024. https://arxiv.org/pdf/2406.01702

• Scalable Query Understanding for E-commerce: An Ensemble Ar-
chitecture with Graph-based Optimization. ACL Anthology, 2024.
https://aclanthology.org/2024.clicit-1.35/

• Chen Luo et al.. Exploring Query Understanding for Amazon Prod-
uct Search. 2024. https://arxiv.org/abs/2408.02215

• AutoKnow: Self-Driving Knowledge Collection for Products of Thou-
sands of Types. KDD, 2020. https://arxiv.org/abs/2006.13473

• Jon Eskreis-Winkler. XWalk: Random Walk Based Candidate Re-
trieval for Product Search. 2023. https://arxiv.org/pdf/2307.12019

• Wang Chen et al.. PAIRS: Parametric–Verified Adaptive Information
Retrieval and Selection for Efficient RAG. 2025. https://arxiv.org/
pdf/2508.04057

• On the Theoretical Limitations of Embedding-Based Retrieval. Google,
2025. https://arxiv.org/abs/2508.21038

496

21 Recommended Reading
21.4 Mentioned and recommended Papers, Blogs, Books

• Fen Xia et al.. Listwise Approach to Learning to Rank - Theory and
Algorithm. 2008. https://icml.cc/Conferences/2008/papers/167.pdf

• Ma, X. et al.. Entire Space Multi-Task Model: An Effective Approach
for Estimating Post-Click Conversion Rate. 2018. https://arxiv.org/
abs/1804.07931

• Zhou, G. et al.. Deep Interest Network for Click-Through Rate
Prediction. 2018.https://arxiv.org/abs/1706.06978

• Ashish Kulkarni et al.. Generative Product Recommendations for
Implicit Superlative Queries. 2025. https://arxiv.org/pdf/2504.187
48

• Kai Yuan, Da Kuang. Deep Pairwise Learning To Rank For Search
Autocomplete. Amazon Search, 2021. https://arxiv.org/pdf/2108.049
76

• Sonali Singh et al.. Evaluating Auto-complete Ranking for Diversity
and Relevance. Amazon Science. https://www.amazon.science/publica
tions/evaluating-auto-complete-ranking-for-diversity-and-relev
ance

• Andrew Trotman et al.. The Architecture of eBay Search. https:
//ceur-ws.org/Vol-2311/paper_14.pdf

• Paul Covington, Jay Adams, Emre Sargin. Deep Learning based
Recommender System. YouTube, 2016. https://dl.acm.org/doi/10.11
45/2959100.2959190

• Fei Sun et al.. BERT4Rec: Sequential Recommendation with Bidi-
rectional Encoder Representations from Transformer. Alibaba Group,
2019. https://arxiv.org/abs/1904.06690

• Wang-Cheng Kang and Julian McAuley. Self-Attentive Sequential
Recommendation. 2018. https://arxiv.org/abs/1808.09781

497

21 Recommended Reading
21.4 Mentioned and recommended Papers, Blogs, Books

• Rex Ying et al.. PinSage: Graph Convolutional Neural Networks for
Web-Scale Recommender Systems. Pinterest, 2018. https://arxiv.or
g/abs/1806.01973

• Deep Reinforcement Learning for List-wise Recommendations. Al-
ibaba, 2018. https://arxiv.org/pdf/1803.00710

• Lahiri, Qin, and Liu. Offline Multi-Objective Optimization (OMOO)
in Search Page Layout Optimization Using Off-policy Evaluation.
Amazon, 2024. https://sigir-ecom.github.io/eCom24Papers/paper_21.
pdf

• Greg Nudelman. Designing Search: UX Strategies for eCommerce
Success. 2011. https://www.amazon.com/Designing-Search-Strategie
s-eCommerce-Success/dp/0470942231

• Seizing the agentic AI advantage. McKinsey, 2025. https://www.mckins
ey.com/capabilities/quantumblack/our-insights/seizing-the-agent
ic-ai-advantage

• Agentic Commerce is Redefining Retail - How to Respond. BCG,
2025. https://www.bcg.com/publications/2025/agentic-commerce-red
efining-retail-how-to-respond

• What Is Your AI Agent Buying? Evaluation, Implications and
Emerging Questions for Agentic E-Commerce. 2025. https://arxiv.
org/abs/2508.02630

• Shunyu Yao, et al.. ReAct: Synergizing Reasoning and Acting in
Language Models. ICLR, 2023. https://arxiv.org/abs/2210.03629

• Shunyu Yao, et al.. WebShop: Towards Scalable Real-World Web
Interaction with Grounded Language Agents. NeurIPS, 2022. https:
//arxiv.org/abs/2207.01206

• ShoppingBench: Real-World Intent-Grounded Shopping Benchmark.
2025. https://arxiv.org/abs/2508.04266

498

21 Recommended Reading
21.4 Mentioned and recommended Papers, Blogs, Books

• Z. Wang, et al.. MACRec: A Multi-Agent Collaboration Framework
for Recommendation. 2024. https://arxiv.org/abs/2402.15235

• Peng et al.. Multi-Agent Cognitive Decision Framework (MACDF)
for E-Commerce Search. 2025. https://arxiv.org/abs/2510.20567

• P. Feng, et al.. AGILE: A Novel Reinforcement Learning Framework
of LLM Agents. 2024. https://arxiv.org/abs/2405.14751

• From Prompt Injections to Protocol Exploits: Threats in LLM-
Powered AI Agents Workflows. 2025. https://arxiv.org/abs/2506.2
3260

• Search Behavior Drives 44% of Ecommerce Revenue, Constructor
Study Reveals. 2025. https://talk-commerce.com/blog/needs-links-s
earch-behavior-drives-44-of-ecommerce-revenue-constructor-study
-reveals/

• 40+ stats on e-commerce search and KPIs. Algolia Blog. https:
//www.algolia.com/blog/ecommerce/e-commerce-search-and-kpis-sta
tistics

• 13 On-Site Search Conversion Rate Statistics For eCommerce Stores.
Opensend, 2025. https://www.opensend.com/post/on-site-search-con
version-rate-statistics-ecommerce

• The Silent Killer of Ecommerce Sales: Search Abandonment. Athos
Commerce Team. https://athoscommerce.com/blog/the-silent-kille
r-of-ecommerce-sales-search-abandonment/

• Cleo: the open source technology behind LinkedIn’s typeahead search.
Jingwei Wu, 2012. https://engineering.linkedin.com/open-source/cl
eo-open-source-technology-behind-linkedins-typeahead-search

• Faceted search using Elasticsearch. Benediktas Kazanavičius, 2023. http
s://vinted.engineering/2023/03/21/faceted-search-using-elasticse
arch/

499

21 Recommended Reading
21.4 Mentioned and recommended Papers, Blogs, Books

• Building a deep learning-based retrieval system for personalized
recommendations. eBay Innovation Blog, 2022. https://innovation.eba
yinc.com/stories/building-a-deep-learning-based-retrieval-syste
m-for-personalized-recommendations/

• Scaling our online feature store to 20 million reads per second.
DoorDash Engineering Blog, 2024. [https://theblueprint.dev/p/doordash-
feature-store-p1](https://theblueprint.dev/p/doordash-feature-store-p1

• Improving precision of e-commerce search results. Jens Kürsten and
Arne Vogt. https://www.youtube.com/watch?v=DTS0TIYx5fc

• What Is Agentic Commerce?. Salesforce, 2025. https://www.salesfor
ce.com/commerce/ai/agentic-commerce/

• Understanding AI agent types: A guide to categorizing complexity.
Red Hat, 2025. https://www.redhat.com/en/blog/understanding-ai-age
nt-types-simple-complex

• What Are Goal-Based AI Agents? (+ Examples for Marketers).
CleverTap. https://clevertap.com/blog/goal-based-agent-examples/

• RAG vs Agentic RAG: A Comprehensive Guide. Medium. https:
//medium.com/@datajournal/rag-vs-agentic-rag-6711cce24037

• Traditional RAG vs. Agentic RAG—Why AI Agents Need Dynamic
Knowledge to Get Smarter. NVIDIA Developer Blog. https://develo
per.nvidia.com/blog/traditional-rag-vs-agentic-rag-why-ai-agent
s-need-dynamic-knowledge-to-get-smarter/

• RAG, AI Agents, and Agentic RAG: An In-Depth Review and
Comparative Analysis. DigitalOcean. https://www.digitalocean.com/c
ommunity/conceptual-articles/rag-ai-agents-agentic-rag-compara
tive-analysis

• Shopify Magic. Shopify. https://www.shopify.com/magic

500

This is a demonstration PDF.
The full book is available for purchase:

https://testmysearch.com/my-books.html

22 Conclusion

This book has traced the entire arc of e-commerce search: from its origins in the
inverted index, to the statistical precision of lexical ranking (BM25), the conceptual
power of semantic retrieval (vectors), the conversational access of RAG, and now,
finally, to the proactive execution of Agentic AI.

The role of the e-commerce search engineer is fundamentally expanding. The job is
no longer just about retrieval and ranking. The future of this role will be defined
by orchestration, governance, and tool-building.

The future of e-commerce is not one of pure, unrestrained agent autonomy. It is a
complex hybrid system where:

• User-facing agents provide a new, conversational entry point to the web.

• Business-facing agents autonomously optimize back-office operations like
pricing and inventory.

• A robust Human-in-the-Loop framework provides the critical layer of
human governance, trust, and continuous training.

• This entire ecosystem is connected via a new, open protocol stack (MCP
and A2A) that enables interoperability between all players.

The strategic challenge for every e-commerce architect is now clear. The ”agentic
web” is being built today. The choice for every retailer is simple: to be disinterme-
diated by it, or to build for it. Building for it means investing in the ”agent-ready”
infrastructure—exposing clean business logic via MCP servers, adopting A2A proto-
cols for collaboration, and building the internal governance frameworks to manage

22 Conclusion

autonomous systems safely. This is the new mandate for building a search platform
that can survive and thrive in the emerging autonomous economy.

The design of a modern e-commerce search system is a multifaceted engineering
challenge that sits at the intersection of information retrieval, natural language
processing, machine learning, and distributed systems. This book has provided a
comprehensive blueprint for engineers tasked with building such a platform, charting
a course from foundational principles to the cutting-edge of AI-driven product
discovery.

The journey begins with a fundamental reframing of the search system, not as a static
information retrieval tool, but as a dynamic, learning-based prediction engine.
Its core task is to predict user intent, product relevance, and the optimal ordering
of results to maximize both user satisfaction and business value. This perspective
necessitates an architecture built around continuous feedback loops, where data
from user interactions, controlled experiments, and system monitoring are used to
constantly refine and improve performance.

A successful implementation relies on a modular, microservices-based architec-
ture that decouples the core stages of the search pipeline. The Query Under-
standing stage acts as a crucial ”translator,” converting ambiguous natural language
into a structured representation of intent. This decoupling allows the downstream
Candidate Retrieval and Ranking stages to operate on clean, canonical data,
simplifying their design and improving their robustness. The state-of-the-art in
retrieval is a hybrid, multi-source approach that strategically ensembles lexical,
semantic, and behavioral signals to achieve high recall across the full spectrum of
user queries. This is followed by a two-stage ranking funnel, where a sophisticated
Learning to Rank model, such as LambdaMART or a neural network, performs
the final, precision-oriented re-ranking of candidates. This entire process must be
guided by a multi-objective optimization framework that intelligently balances
the competing goals of relevance, conversion, and profitability.

Finally, the most advanced backend is only as good as the user’s ability to interact
with it. A thoughtfully designed user experience, grounded in usability research,
is paramount. Looking forward, the rise of Generative AI is transforming this

504

22 Conclusion

experience, moving it from a simple query-response model to a rich, conversational
dialogue.

Ultimately, designing a world-class e-commerce search system is not a one-time
project but a continuous process of measurement, experimentation, and innovation.
The principles and techniques outlined in this book provide the architectural pat-
terns, algorithmic knowledge, and operational disciplines necessary to build a search
platform that is not only technically excellent but also a powerful engine for business
growth and customer delight.

505

