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Abstract

This book serves as an essential practitioner’s guide to the world of recommender algorithms as it stands
in early 2026. We begin with the indispensable baselines—from classic neighborhood models to powerful
matrix factorization—and build toward the sophisticated deep learning architectures that power today’s
largest platforms, including hybrids for CTR prediction and state-of-the-art sequential models.

A core theme of this guide is the practical integration of the latest technological breakthroughs. We
dedicate significant attention to the transformative impact of Large Language Models (LLMs), offering
architectural blueprints for leveraging them as powerful semantic feature extractors, building reliable
Retrieval-Augmented Generation (RAG) pipelines, and designing the next wave of generative and
conversational recommender agents. Furthermore, we explore the critical role of multimodal models like
CLIP for solving visual cold-start problems and provide insights into specialized areas like debiasing
and fairness.

This is more than a survey; it is a toolkit for the modern engineer. Each section balances conceptual
depth with pragmatic advice on implementation, scalability, and production readiness, making it the
definitive resource for professionals tasked with creating value through personalization.





Introduction

In the modern digital ecosystem, users are confronted with a virtually infinite selection of items, from
products and movies to news articles and music. This phenomenon, often termed ”information overload,”
presents a significant challenge for both consumers and platforms. Recommender systems have emerged
as a critical technology to address this challenge, serving as personalized information filters that guide
users toward relevant content, thereby enhancing user experience, engagement, and commerce.

The field of recommendation algorithms has undergone a remarkable evolution. Early systems were
built on simple statistical methods that leveraged direct user-item interactions. These foundational
techniques, known as collaborative filtering, gave way to more sophisticated latent factor models, which
sought to uncover the hidden dimensions of user preference by decomposing the user-item interaction
matrix. The deep learning revolution subsequently ushered in a new era, with neural networks enabling
the modeling of complex, non-linear relationships that were previously intractable.

This progression continued with the development of specialized architectures to capture the sequential
dynamics of user behavior, borrowing heavily from advances in natural language processing. Concurrently,
a new perspective emerged that modeled the recommendation problem as a graph, applying Graph
Neural Networks to capture high-order relationships between users and items. Most recently, the
landscape is being reshaped by the advent of large-scale generative models, including Generative
Adversarial Networks, Diffusion Models, and, most notably, Large Language Models (LLMs), which are
redefining the boundaries of what recommender systems can achieve.

This book aims to provide a structured, high-level, and practical overview of this algorithmic landscape.
We organize our survey into several principal sections based on the primary data modality and
methodological approach each class of algorithms leverages:

1. Foundational and Heuristic-Driven Algorithms. Models that rely on intrinsic item attributes
(Content-Based) or manually defined heuristics (Rule-Based) to generate recommendations, offering
interpretability and effectiveness for cold-start scenarios.

2. Interaction-Driven Recommendation Algorithms. The core of collaborative filtering, where
models rely exclusively on user-item interaction data (e.g., ratings, clicks, purchases).

3. Context-Aware Recommendation Algorithms. Advanced models that leverage explicit side
features and contextual information, crucial for industrial applications like CTR prediction.
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4. Text-Driven Recommendation Algorithms. Models that incorporate unstructured text, such
as user reviews or item descriptions, and are increasingly powered by LLMs.

5. Multimodal Recommendation Algorithms. Models that fuse information from multiple
sources, such as text and images, to create a holistic understanding of items and preferences.

6. Knowledge-Aware Recommendation Algorithms. Advanced models that leverage structured
knowledge from external sources like knowledge graphs.

7. Specialized Recommendation Tasks. A look at crucial sub-fields like ensuring fairness,
mitigating bias, and addressing the cold-start problem.

8. New Algorithmic Paradigms. An exploration of emerging paradigms that extend beyond
traditional recommendation, focusing on long-term value, causality, and transparency.

9. Evaluating Recommender Systems. A practical guide to the metrics and methodologies used
to measure the performance and quality of recommender systems.

For each algorithm, we provide a concise explanation of its core concept, key differentiators, primary
use cases, and practical considerations for implementation, along with a link to its seminal paper.
Our objective is to equip engineers and researchers with a comprehensive map to navigate the field,
understand its historical trajectory, and make informed decisions when designing and deploying the
next generation of recommender systems.

4



Structure and Prerequisites

This book is structured to guide you progressively from foundational concepts to the state-of-the-art,
with a focus on practical understanding and implementation. Below is an overview of the book’s
organization and the knowledge recommended to get the most out of it.

How This Book Is Organized

We have organized the content into thematic sections that build upon one another, guiding you
progressively from foundational concepts to the state-of-the-art. This structure is based on the primary
data modality and algorithmic approach each family of models utilizes.

• Section 1: Foundational and Heuristic-Driven Algorithms. We begin with the essential
building blocks of recommendation. This includes content-based filtering methods like TF-IDF
and the Vector Space Model, alongside simple yet crucial rule-based systems such as ”Top Popular”.
These models serve as powerful baselines and are often vital components in more complex hybrid
systems.

• Section 2: Interaction-Driven Recommendation Algorithms. As the largest and most
comprehensive section, this chapter forms the core of both classic and modern collaborative
filtering. We journey from traditional neighborhood-based methods (ItemKNN, UserKNN) to
the powerful latent-factor models of matrix factorization (SVD, BPR, WRMF). From there, we
transition into the deep learning era, covering hybrid architectures (NCF, NeuMF), sophisticated
sequential models that learn from user behavior over time (GRU4Rec, SASRec, BERT4Rec), and
conclude with cutting-edge generative paradigms like IRGAN and DiffRec.

• Sections 3 & 4: Text-Driven and Multimodal Algorithms. Here, we explore how to
leverage richer, unstructured data to enhance recommendations. We cover models that learn from
user reviews and item descriptions, followed by a deep dive into the transformative impact of
Large Language Models (LLMs) in roles ranging from feature extraction to fully generative and
conversational agents. We then expand into the visual domain, discussing how multimodal models
like CLIP create a shared understanding between text and images to effectively solve cold-start
problems.
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• Advanced Topics: Context, Knowledge, and Specialized Tasks. The final sections cover
advanced topics critical for building robust, real-world systems. We discuss context-aware models
that are the workhorses of industrial CTR prediction (Wide & Deep, LightGBM) and knowledge-
aware models that leverage the rich structure of external knowledge graphs. We conclude with a
focused look at specialized but essential sub-fields, including debiasing, fairness, and meta-learning
strategies for tackling cold-start scenarios.

• Appendix. For readers keen on implementation, the appendix provides detailed, line-by-line
explanations of the code presented in the tutorials, clarifying the role of each function and library.

Essential Mathematical Basics for Understanding Latent Matrix Models

We assume that the reader is already familiar with all of the following, but for
the sake of completeness and consistency of presentation, we provide a very brief
introduction to the mathematical foundations that will be frequently referenced
in the later chapters of the book.

Matrix Representation in Recommendations

A matrix is a structured grid of numbers, often used in recommendation systems to represent interactions
between users and items. Specifically:

• Rows correspond to users (e.g., individuals in a dataset).

• Columns correspond to items (e.g., movies, products).

• Each cell contains an interaction value, such as a rating (e.g., 5 stars) or a binary indicator (1 for
interaction, 0 otherwise).

When most cells are empty—because users interact with only a small subset of items—the matrix is
described as sparse. Latent matrix models aim to predict these missing values by uncovering patterns
within the observed data.

Example — A small matrix R with 3 users and 4 items might appear as:

R =

5 ? 3 ?
? 4 ? 2
1 ? 5 ?


Here, ”?” denotes unknown values to be predicted.

6
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Vectors and Dot Products

A vector is a sequence of numbers, such as a row or column extracted from a matrix. In latent matrix
models, users and items are represented by latent vectors—compact lists of numbers capturing hidden
characteristics (e.g., a user’s preference for action or romance genres, inferred from data).

The dot product measures the similarity between two vectors by computing a single scalar value. For
vectors u⃗ = (u1, u2, . . . , uk) and i⃗ = (i1, i2, . . . , ik), the dot product is defined as:

u⃗ · i⃗ = u1i1 + u2i2 + · · ·+ ukik

In recommendation systems, the dot product between a user’s latent vector and an item’s latent vector
predicts the expected rating, with a higher value indicating a stronger predicted preference.

Example — A user’s latent vector (0.8 for action, 0.2 for romance) and an item’s vector (0.9 for action,
0.1 for romance) yield a dot product of 0.8× 0.9 + 0.2× 0.1 = 0.74, suggesting a likely positive match.

Matrix Factorization (Decomposition)

Matrix factorization involves decomposing a large user-item matrix R into two smaller matrices,
U (containing user latent vectors) and V (containing item latent vectors), such that their product
approximates R:

R ≈ U × V T

Here, V T denotes the transpose of V , aligning item vectors as columns. The term latent refers to the
hidden factors (e.g., genres, styles) that these vectors represent, learned directly from the data.

This decomposition is efficient because it reduces dimensionality. For a matrix R with m users and n
items, U is m× k and V is n× k, where k (the number of latent factors) is small (e.g., 10–100). This
approach addresses sparsity by predicting missing entries based on learned patterns.

Loss Functions and Optimization

Latent matrix models optimize U and V by minimizing a loss function, which quantifies the discrepancy
between predicted and actual ratings. A common choice is the Mean Squared Error (MSE), defined for
actual ratings r and predicted ratings r̂ as:

MSE = 1
N

∑
(r − r̂)2

7
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Optimization techniques, such as gradient descent, iteratively adjust U and V to reduce this error.
Gradient descent starts with random U and V and updates them in small steps to approach the
minimum loss, analogous to finding the lowest point in a landscape.

Some models, like ALS, use an alternating approach, where U is fixed to optimize V , then V is fixed to
optimize U , repeating until convergence.

Regularization

To prevent overfitting—where models memorize noise rather than generalizing patterns—regularization
is employed. This technique penalizes overly large values in U and V , encouraging simpler solutions.

A standard regularization method is L2 regularization, which adds a penalty term to the loss function:

λ(|u⃗|2 + |⃗i|2)

Here, λ controls the strength of the penalty, and |u⃗|2 and |⃗i|2 represent the squared magnitudes of the
user and item vectors, respectively. This ensures the model focuses on meaningful patterns.

8



Overview of Recommender Algorithms

Foundational and Heuristic-Driven Algorithms

Vector Space Model (VSM) — A foundational framework for content-based filtering that represents
items and user preferences as vectors in a high-dimensional feature space, where similarity is calculated
based on vector proximity. (see page 17)

TF-IDF — A classic weighting scheme for the Vector Space Model (VSM) that calculates feature weights
based on a term’s frequency within an item and its inverse frequency across the entire catalog, making
it an effective baseline for recommending new items with descriptive metadata. (see page 21)

Embedding-based Similarity (Word2Vec) — This latent approach to VSM uses models like Word2Vec
to learn dense feature embeddings based on co-occurrence, capturing semantic relationships that TF-IDF
misses. The model is trained to predict context features that appear alongside a given feature, creating
a vector space where similar features are mapped closely together. (see page 22)

CBOW (Continuous Bag-of-Words) — As an alternative to Word2Vec’s Skip-gram, the CBOW model
learns feature embeddings by predicting a central feature from the average of its surrounding context
features, offering a more computationally efficient approach that performs well for frequent features.
(see page 33)

FastText — Extending Word2Vec, FastText addresses the out-of-vocabulary problem by learning
embeddings for character n-grams rather than entire features, allowing it to construct meaningful
vectors for rare or previously unseen features by combining the representations of their constituent
parts. (see page 34)

Classic Rule-Based Systems — These systems use manually defined, domain-specific logical rules (e.g.,
”if-then”) to generate recommendations based on business knowledge rather than statistical learning,
offering complete transparency and control but lacking personalization and scalability. (see page 35)

Top Popular — This simple heuristic-driven algorithm recommends items based on their overall
popularity across all users, typically measured by the total number of interactions, serving as a common
non-personalized baseline that is effective for the cold-start problem. (see page 36)

Apriori — the classic algorithm for association data mining. It works iteratively by first identifying
individual items that meet a minimum support threshold (i.e., appear frequently). It then uses these



Rauf Aliev. Recommender Systems in 2026: Practitioner’s Guide

frequent items to generate candidate pairs, tests their frequency, and continues this level-by-level process
for triplets, quadruplets, and so on. Its efficiency comes from the Apriori Principle: if an itemset is
frequent, all of its subsets must also be frequent, which allows the algorithm to prune a vast number
of candidates early on. However, its primary drawback is the need to make multiple passes over the
database and the potential to generate a massive number of candidate sets, making it slow for large
datasets. (see page 37)

FP-Growth — more efficient alternative that avoids the costly candidate generation step of Apriori. It
works by first compressing the entire transactional database into a compact tree structure known as an
FP-tree. This tree stores the itemset information in a way that allows the algorithm to mine frequent
itemsets directly from this structure with just two passes over the data. This makes it significantly
faster and more memory-efficient, especially for large datasets. (see page 39)

Eclat — takes a different approach by using a vertical data layout. Instead of listing items for each
transaction (horizontal format), it creates a list of transaction IDs for each item. It then finds frequent
itemsets by simply intersecting these transaction ID lists. (see page 40)

Interaction-Driven Recommendation Algorithms

ItemKNN — A classic neighborhood-based collaborative filtering model that recommends items similar
to those a user has previously interacted with. It computes item-to-item similarity based on the
interaction patterns of all users, making it more scalable than user-based approaches when the number
of users greatly exceeds the number of items. (see page 49)

SAR (Simple Algorithm for Recommendations) — A fast and scalable item-based model optimized
for implicit feedback that builds an item similarity matrix based on co-occurrence counts rather than
more complex metrics like cosine similarity, making it a simple yet powerful baseline. (see page 56)

UserKNN — In contrast to ItemKNN, this model finds users with similar interaction histories to a
target user and recommends items that those ”neighboring” users liked. This approach often generates
more diverse and serendipitous recommendations but is less scalable as the user base grows. (see page
63)

SlopeOne — An extremely simple item-based algorithm that predicts ratings based on the pre-computed
average rating deviation between pairs of items. It has no iterative training phase and can be updated
incrementally as new ratings arrive, making it lightweight and fast. (see page 70)

Attribute-Aware k-NN — An extension of k-NN that combines both collaborative signals (user
interactions) and content-based signals (item attributes) into a hybrid similarity metric, which is
particularly effective for alleviating the item cold-start problem. (see page 73)

10
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FunkSVD (Biased Matrix Factorization) — A breakthrough matrix factorization model that predicts
ratings as the sum of a global average, user and item biases, and the dot product of user and item
latent vectors. Unlike true SVD, it is an optimization-based model that works on sparse data and learns
its parameters via methods like Stochastic Gradient Descent. (see page 80)

PMF (Probabilistic Matrix Factorization) — A probabilistic version of matrix factorization that treats
latent factors as probability distributions and assumes ratings are drawn from a Gaussian distribution
centered at the user-item dot product, providing a principled Bayesian approach to regularization. (see
page 85)

WRMF (Weighted Regularized Matrix Factorization) — A matrix factorization model specifically
designed for implicit feedback, which treats all unobserved items as negative examples but assigns them
a much lower confidence weight than positive interactions. It is typically optimized with an efficient
Alternating Least Squares (ALS) algorithm. (see page 90)

BPR (Bayesian Personalized Ranking) — A foundational model that reframes recommendation from
rating prediction to a pairwise ranking task. It is trained to ensure that for any user, a positive
(interacted-with) item has a higher prediction score than a negative (unobserved) item, making it ideal
for optimizing ranked lists from implicit feedback. (see page 99)

SVD++ — An extension of FunkSVD (Biased MF) that incorporates implicit feedback to enrich the
user’s latent representation. A user’s preference is modeled not just by their explicit latent vector but
also by an aggregated vector representing all the items they have interacted with, regardless of the
rating. (see page 102)

TimeSVD++ — An extension of SVD++ that incorporates temporal dynamics by modeling user
biases, item biases, and user factors as functions of time, allowing it to capture the dynamic nature of
preferences and item popularity. (see page 109)

SLIM & FISM — These models directly learn a sparse item-to-item similarity matrix from implicit
data. SLIM uses a sparse linear model with L1/L2 regularization to create an efficient and interpretable
matrix, while FISM factorizes the similarity matrix into two smaller embedding matrices to better
capture latent relationships and handle extreme data sparsity. (see page 112)

Non-Negative Matrix Factorization (NonNegMF) — A variant of matrix factorization that constrains
the user and item latent factors to be non-negative, resulting in an additive, parts-based representation
that is often more interpretable than standard matrix factorization. (see page 123)

CML (Collaborative Metric Learning) — Reframes collaborative filtering as a metric learning problem,
learning a shared embedding space where the Euclidean distance between a user and item reflects their
compatibility. It uses a pairwise loss to pull positive user-item pairs closer together than negative pairs,
serving as a powerful alternative to BPR for ranking tasks. (see page 126)

11
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NCF (Neural Collaborative Filtering) & NeuMF — NCF is a framework that generalizes matrix
factorization by replacing the dot product with a flexible multi-layer perceptron (MLP) to capture
complex, non-linear user-item interactions. Its flagship model, NeuMF, fuses a linear matrix factorization
path with a non-linear MLP path to combine the strengths of both approaches for state-of-the-art
performance on implicit feedback tasks. (see page 131)

DeepFM & xDeepFM — These are hybrid architectures for CTR prediction that combine a ”wide”
component for memorizing low-order feature interactions with a ”deep” component for generalizing
to high-order interactions. DeepFM uses a Factorization Machine for the wide part, while xDeepFM
enhances this with a Compressed Interaction Network (CIN) to learn explicit, high-order feature
interactions in a more controlled manner. (see page 136)

Autoencoder-based (DAE & VAE) — This approach frames recommendation as a reconstruction
task, training a neural network to compress a user’s entire interaction history into a low-dimensional
vector and then reconstruct it. Denoising Autoencoders (DAEs) learn robust representations from
corrupted inputs, while Variational Autoencoders (VAEs) offer a probabilistic, generative approach that
is particularly effective for modeling the uncertainty in implicit feedback data. (see page 140)

SimpleX — A simple yet powerful bi-encoder baseline for collaborative filtering that achieves state-
of-the-art performance through a contrastive learning objective (InfoNCE). It learns to pull positive
user-item pairs together in an embedding space while pushing them apart from in-batch negative items,
enhanced by consistency regularization for more robust training. (see page 146)

EASE (Embarrassingly Shallow Autoencoders) — A non-neural, linear autoencoder that learns an
item-item similarity matrix to reconstruct user interaction histories. Its key differentiator is a closed-form
analytical solution that eliminates the need for iterative training, making it an extremely strong, simple,
and reproducible baseline for implicit feedback tasks. (see page 149)

GRU4Rec — A pioneering sequential model that applies a Gated Recurrent Unit (GRU), a type of RNN,
to session-based recommendation. It processes a sequence of user interactions one by one, maintaining
an evolving hidden state that captures the user’s current intent to predict the next item they will
interact with. (see page 150)

NextItNet — An alternative sequential model that uses stacked layers of dilated 1D convolutions to
efficiently identify patterns and long-range dependencies in user interaction histories. Unlike RNNs, its
convolutional architecture can process all parts of a sequence in parallel, making training significantly
faster and more scalable for very long sequences. (see page 153)

SASRec & BERT4Rec — These models apply the Transformer architecture’s self-attention mechanism
to sequential recommendation. SASRec is unidirectional, using masked self-attention to predict the next
item based only on past actions. In contrast, BERT4Rec is bidirectional and is trained to predict masked
items using both past and future context, allowing it to learn a richer, more holistic representation of
user interests. (see page 156)

12
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CL4SRec (Contrastive Learning for Sequential Recommendation) — A framework that enhances
sequential models like SASRec by adding an auxiliary contrastive learning objective. It trains the
model to recognize that two different augmented views of the same user sequence should have similar
representations, forcing it to learn more robust and generalizable user profiles, especially in sparse data
scenarios. (see page 159)

IRGAN — Adapts the Generative Adversarial Network (GAN) framework to recommendation by
training a Generator (the recommender) to produce plausible user-item pairs and a Discriminator to
distinguish them from real interactions. This adversarial game forces the Generator to learn a more
robust model of user preferences, effectively performing a type of hard negative mining. (see page 163)

DiffRec — A generative model that adapts Denoising Diffusion Probabilistic Models (DDPMs) to
recommendation. It learns the distribution of user preferences by training a neural network to reverse a
fixed process of gradually adding noise to user interaction profiles, enabling the generation of high-quality
and diverse recommendations from pure noise. (see page 166)

GFN4Rec — Frames recommendation as a sequential list-building task using Generative Flow Networks
(GFlowNets). The model learns a policy to construct a slate of items step-by-step, where the probability
of generating a list is proportional to a predefined reward, inherently promoting both relevance and
diversity in the final set of recommendations. (see page 169)

IDNP (Interest Dynamics Neural Process) — Leverages the principles of Normalizing Flows, a class
of generative models that learn a data distribution through a series of invertible transformations.
This allows it to model a user’s preference as a complex probability distribution over time, capturing
uncertainty and making it particularly promising for few-shot or cold-start sequential recommendation
tasks. (see page 172)

Text-Driven Recommendation Algorithms

DeepCoNN — A foundational review-based model that uses two parallel Convolutional Neural Networks
(CNNs) to learn latent representations directly from raw text. One CNN processes all reviews written
by a user to form a user vector, while the other processes all reviews written for an item to form an
item vector, which are then combined to predict a rating. (see page 191)

NARRE — An extension of DeepCoNN that incorporates a dual attention mechanism to identify and
assign higher weights to the most useful and informative reviews when constructing user and item
representations. This not only improves accuracy by filtering out noise but also provides a natural
pathway to explainability by highlighting the most influential reviews. (see page 192)

LLM-based Retrieval (Dense Retrieval & Cross-Encoders) — This is a standard two-stage architecture
for large-scale systems. First, a fast bi-encoder independently creates embeddings for a user query and
all items to retrieve a set of candidates from a massive catalog. Second, a slower but more accurate

13



Rauf Aliev. Recommender Systems in 2026: Practitioner’s Guide

cross-encoder re-ranks these candidates by processing the user query and each item together to produce
a precise relevance score. (see page 193)

LLM-based Generative / Instruction-Tuned — This approach reframes recommendation as a text
generation task where an instruction-tuned LLM is given a prompt with a user’s history and a task
(e.g., ”Recommend 5 sci-fi movies and explain why”). The model leverages its vast world knowledge
and zero-shot reasoning ability to generate a coherent, natural language response containing both
recommendations and justifications. (see page 194)

LLM-based RAG & Feature Extraction — This paradigm uses an LLM as a powerful component to
enhance other systems. It can act as a sophisticated feature extractor, creating high-quality semantic
embeddings from text to feed into any downstream model. Alternatively, in a Retrieval-Augmented
Generation (RAG) setup, it grounds a generative LLM with externally retrieved, up-to-date information
to ensure its recommendations are factually accurate and to mitigate hallucinations. (see page 195)

LLM Agents & Tool Use — An advanced paradigm where the LLM acts as a reasoning engine that
can autonomously plan and use external tools (e.g., APIs, databases, other recommender models).
It decomposes a complex user request into a series of sub-tasks and tool calls to fulfill multi-step,
sophisticated goals beyond what a single model can achieve. (see page 195)

Conversational RecSys (Dialogue-based) — This approach creates an interactive, multi-turn dialogue
to actively elicit a user’s preferences, especially in cold-start scenarios. The system acts like a guided
assistant, asking clarifying questions to progressively narrow down options and understand the user’s
true, often ambiguous, intent. (see page 196)

Multimodal Recommendation Algorithms

CLIP (Contrastive Language-Image Pre-Training) — A foundational model that learns a shared
embedding space for images and text by training on a massive dataset of (image, caption) pairs with a
contrastive objective. Its powerful zero-shot transfer capability allows it to understand visual concepts
described in text without explicit fine-tuning, making it an extremely effective tool for generating
semantic embeddings from item images to solve the visual cold-start problem. (see page 199)

ALBEF (Align Before Fuse) — A multimodal architecture that first aligns image and text features
from unimodal encoders using a contrastive loss, and then fuses them using a cross-modal encoder. Its
multi-task training objective allows it to learn finer-grained interactions between visual regions and
words, making it a state-of-the-art model for complex multimodal reasoning tasks. (see page 200)

Multimodal VAEs — Extends the Variational Autoencoder framework to learn a joint latent probability
distribution across multiple modalities (e.g., image and text). Its probabilistic nature makes it excellent
at handling missing modalities and enables cross-modal generation, such as creating a likely text
description for a given product image. (see page 201)
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Multimodal Diffusion — Applies the denoising diffusion process to multimodal data, learning the
joint distribution by training a model to reverse the process of gradually adding noise to data from
multiple modalities simultaneously. This paradigm is capable of generating exceptionally high-quality
and realistic multimodal content, representing the cutting edge of generative modeling. (see page 201)

Context-Aware Recommendation Algorithms

Factorization Machines (FM) — A powerful model for context-aware recommendation that extends
matrix factorization to handle any real-valued feature vector. Its key innovation is efficiently modeling
all pairwise feature interactions using factorized parameters, which allows it to estimate interaction
strengths for feature combinations it has never seen in the training data, thus solving the data sparsity
problem. (see page 177)

AMF (Attentional Factorization Machine) — An extension of Factorization Machines that incorporates
an attention mechanism to learn the importance of different pairwise feature interactions. This allows
the model to focus on the most predictive combinations while filtering out noise, improving both
accuracy and interpretability for CTR prediction tasks. (see page 179)

Wide & Deep — A pioneering hybrid architecture from Google that jointly trains a ”wide” linear
component for memorizing frequent feature co-occurrences and a ”deep” neural network for generalizing
to unseen feature combinations. This unified approach allows the model to be both powerful and
efficient, making it a foundational architecture for large-scale industrial CTR prediction. (see page 180)

LightGBM — A high-performance gradient boosting framework that uses an ensemble of decision trees
to predict CTR based on a wide array of user, item, and contextual features. Its primary differentiators
are its speed and efficiency, which are achieved through leaf-wise tree growth and native handling of
categorical features, making it a workhorse for industrial ranking tasks on tabular data. (see page 184)

Knowledge-Aware Recommendation Algorithms

NGCF (Neural Graph Collaborative Filtering) — A pioneering model that applies a standard Graph
Neural Network (GNN) to the user-item interaction graph. It learns embeddings by iteratively aggre-
gating features from a node’s neighborhood, including feature transformation matrices and non-linear
activations, to capture high-order connectivity patterns. (see page 205)

LightGCN — A radical simplification of NGCF that achieves superior performance by removing the
feature transformation matrices and non-linear activations, leaving only the core GNN component of
neighborhood aggregation. It learns user and item embeddings by simply taking the weighted sum
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of their neighbors’ embeddings from the previous layer, proving that for CF, effectively modeling the
graph structure is key. (see page 206)

SGL (Self-supervised Graph Learning) — A training paradigm applied on top of GNN-based recom-
menders like LightGCN to improve embedding quality. It introduces an auxiliary contrastive learning
task, training the model to recognize that a node’s representation should be similar across two different
augmented views of the graph, which forces it to learn more robust and generalizable representations,
especially in sparse data scenarios. (see page 208)

New Algorithmic Paradigms

Reinforcement Learning (RL) for RecSys — This paradigm frames recommendation as a sequential
decision problem where an ”agent” (the system) learns a ”policy” to recommend items that maximize a
long-term reward, such as user engagement over an entire session. It shifts the focus from predicting a
single accurate interaction to optimizing the entire sequence of recommendations for long-term value.
(see page 215)

Causal Inference in RecSys — This approach moves beyond correlation to understand causation, aiming
to recommend items that will actually persuade a user to interact, rather than just recommending items
they were likely to choose anyway. Techniques like Uplift Modeling identify ”persuadable” users to
maximize the true incremental impact of the recommendations. (see page 216)

Explainable AI (XAI) for RecSys — This field focuses on making the recommendation process
transparent and trustworthy by answering the question ”Why was this recommended to me?”. Methods
include generating explanations by finding paths in a knowledge graph or highlighting the most influential
user/item features that led to the recommendation. (see page 217)
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1 Foundational and Heuristic-Driven Algorithms

Before the dominance of collaborative filtering, the recommendation landscape was shaped by founda-
tional approaches that remain relevant today as powerful baselines, components of hybrid systems, and
transparent business logic engines. These algorithms operate not on user interaction patterns but on
intrinsic item attributes (Content-Based) or manually defined heuristics (Rule-Based). They are highly
interpretable, easy to implement, and effectively address the cold-start problem for new items.

1.1 Content-Based Filtering

Content-based filtering recommends items similar to those a user has liked in the past, based on the
attributes of the items themselves. It operates on the principle: ”Show me more of what I like,”
by building a user profile from their interactions (e.g., likes, ratings, or views) and matching it to item
features. This approach is independent of other users’ data, making it robust against data sparsity
and effective for recommending niche items or new items with descriptive metadata. However, it may
over-specialize, recommending only highly similar items, and relies heavily on high-quality metadata.

How it works... Imagine you’ve watched and loved the movie Blade Runner. A
content-based system would analyze its attributes: Genre: Sci-Fi, Theme: Cyberpunk,
Director: Ridley Scott. It would then search its catalog for other items with similar
attributes, such as Alien (also directed by Ridley Scott) or Ghost in the Shell (also sci-fi
and cyberpunk), and recommend them to you. The user’s taste is built as a profile based on
the content of items they’ve previously enjoyed.

1.1.1 The Vector Space Model (VSM): A Foundational Framework

Key concept — The Vector Space Model (VSM) is the foundational framework for content-based
filtering. It represents items and user preferences as vectors in a high-dimensional space where each
dimension corresponds to a specific feature (e.g., a genre, a brand, a keyword). Similarity between
items, or between an item and a user, is then calculated as the proximity of their vectors in this space.

Key differentiator — VSM is not a single algorithm but a flexible model that provides the theoretical
underpinning for many content-based techniques. It separates the abstract idea of vector representation
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from the specific implementation of how vector weights are calculated (e.g., TF-IDF or binary), making
it a versatile and fundamental concept.

Use cases — As a general framework, it’s the basis for recommending articles, products, or media
based on metadata. It is particularly effective for explaining the mechanics of content-based filtering
and for building systems in cold-start scenarios where item attributes are available but interaction data
is sparse.

When to Consider — Understanding VSM is the first step in building any content-based recommender.
It provides the essential blueprint for representing content numerically, upon which specific weighting
schemes and similarity metrics are built.
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Seminal Papers:

• Salton, G., Wong, A., & Yang, C. S. (1975). A Vector Space Model for Automatic Indexing.
https://dl.acm.org/doi/10.1145/361219.361220.

Useful links:

• Vector Space Model, Wikipedia article [https://en.wikipedia.org/wiki/Vector space model]
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:::::::::::::::::::::::::::::::::::::::
Mathematical Foundations of VSM

The Vector Space Model is an algebraic framework that allows us to perform geometric and mathematical
operations on items by representing them as numerical vectors.

To generalize from its origins in text analysis, we map:

• A ”document” is an item in the catalog.

• A ”term” is a feature (e.g., genre=’sci-fi’, brand=’Apple’, topic=’machine-learning’).

• The ”corpus” is the entire catalog of items.

Part A: Representing Items as Vectors

The first step is to define the dimensions of the vector space by creating a ”vocabulary” of all unique
features across the entire catalog, F = {f1, f2, . . . , fn}. Each item i is then represented as an n-
dimensional vector i⃗:

i⃗ = (w1,i, w2,i, . . . , wn,i)

The value wk,i is a weight that signifies the importance of feature fk in item i.
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Part B: Feature Weighting Schemes

The VSM framework supports various methods for calculating the weight wk,i. The choice of scheme is
crucial for performance. Common schemes include:

• Binary: A simple scheme where wk,i = 1 if feature fk is present in item i, and 0 otherwise.

• Term Frequency (TF): The weight is the count or normalized frequency of the feature in the
item.

• TF-IDF: The most common and effective scheme, which assigns a high weight to features that
are important to a specific item but rare across the entire catalog. We will detail its calculation in
the next section.

Part C: Measuring Similarity with Cosine Similarity

Once items are represented as vectors, their similarity is measured by their proximity. Cosine Similarity
is the standard metric, measuring the cosine of the angle between two vectors. It is robust to differences
in the number of features (vector magnitude) and effectively captures similarity. For two item vectors,
A⃗ and B⃗:

similarity(A⃗, B⃗) = cos(θ) = A⃗ · B⃗
|A⃗||B⃗|

=
∑n

k=1 AkBk√∑n
k=1 A2

k

√∑n
k=1 B2

k

A score near 1 indicates high similarity, while a score near 0 indicates dissimilarity.

Part D: Creating User Profiles for Recommendation

VSM can be extended to recommend items to a user by creating a vector representation for that user’s
preferences. A user’s profile vector, u⃗, is computed by aggregating the vectors of the items they have
positively interacted with (e.g., rated highly, purchased). A common method is to calculate the average
of these item vectors:

u⃗ = 1
|Iu|

∑
i∈Iu

i⃗

where Iu is the set of items the user liked. Recommendations are then generated by calculating the
cosine similarity between the user’s profile vector u⃗ and all unseen item vectors.

If a user u is new, the set Iu is empty, and you cannot compute a profile vector for them (so called a
user cold-start problem).
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1.1.2 TF-IDF: A Classic VSM Weighting Scheme

Key concept — This classic approach provides a specific method for calculating the feature weights within
the Vector Space Model. TF-IDF (Term Frequency-Inverse Document Frequency) converts an
item’s features into a numerical vector, assigning scores that reflect each feature’s importance to the
item relative to the entire catalog.

Key differentiator — Its simplicity, interpretability, and effectiveness as a baseline. Unlike collaborative
filtering, it can recommend brand-new items as long as they have descriptive features, solving the item
cold-start problem. However, it assumes feature independence, which may miss semantic relationships
(e.g., ”sci-fi” and ”space opera” being related).

Use cases — Recommending articles based on topics, suggesting products based on specifications, or
finding similar movies based on genres and directors. It’s ideal for domains with rich metadata.

When to Consider — Use TF-IDF as a first-pass content-based recommender or a strong baseline. It
excels when you need a fast, simple, and explainable model that relies purely on item features, especially
with diverse descriptive features.

:::::::::::::::::::::::::::::
Mathematical Foundations

This approach provides a precise formula for the feature weights, wk,i, used in the Vector Space Model.

Part A: Calculating the TF-IDF Score

The TF-IDF score reflects a feature’s importance to an item within the catalog and combines two
components:

(1) Term Frequency (TF): Measures how relevant a feature f is to an item i. For non-text features,
it’s typically binary (1 if present, 0 otherwise) or a weighted relevance score. A common normalized
form is:

tf(f, i) = count or relevance of feature f in item i

total number of features in item i

(2) Inverse Document Frequency (IDF): Measures the feature’s rarity across the entire catalog
I, giving higher weight to rare features and lower weight to common ones. To avoid division by zero,
smoothing is applied:

idf(f, I) = log
( |I|+ 1

Number of items with feature f + 1

)
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The final TF-IDF score for a feature is the product of these two values, representing its weight in the
item’s vector:

score(f, i, I) = tf(f, i)× idf(f, I)

Because any single item only has a small subset of all possible features, these vectors are typically very
sparse.

Part B: Making a Recommendation

(1) For each item in the catalog, construct its vector using the TF-IDF scores of its features.

(2) Take a target item (e.g., the last item a user interacted with).

(3) Calculate the Cosine Similarity between its TF-IDF vector and all other items’ vectors.

(4) Recommend the items with the highest similarity scores.

1.1.3 Embedding-based Similarity: A Latent Approach to VSM

These models learn dense embeddings using the distributional hypothesis: ”features that appear in
similar contexts (e.g., co-occurring in the same items) have related meanings.” In recommendation
systems, this hypothesis extends to non-text domains like item tags, where features such as ”sci-fi” and
”cyberpunk” co-occurring in movies suggest semantic similarity. By learning latent representations,
these embeddings capture underlying relationships not explicitly defined in metadata, making them a
powerful approach to content-based filtering. A neural network learns these embeddings via a pretext
task.

Imagine training a model like a game of word association, but for features—given ”sci-fi”, predict
”cyberpunk” but not ”romance”. This contrasts with the Vector Space Model (VSM) described earlier,
which relies on deterministic vector weights from explicit statistics (e.g., TF-IDF). Here, the probabilistic
nature of embedding models, such as Skip-gram, enables them to capture subtler semantic nuances
through learning.

To avoid confusion with VSM, it’s important to understand the training mechanism. The described
approach, Skip-gram with Negative Sampling, reframes the prediction task as a series of independent
binary classification problems. For each positive feature pair, the model learns to distinguish it from
several randomly chosen ”negative” pairs. This is achieved using the sigmoid function, which outputs a
probability for each individual pair, a process fundamentally different from VSM’s algebraic framework.
This contrasts with an alternative training method for Word2Vec, Hierarchical Softmax, which does use
a Softmax layer to model a probability distribution over the entire feature vocabulary.
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The process of using embeddings for recommendations can be broken down into two distinct stages: first,
we train a model like Skip-gram to learn high-quality vector representations for our features; second,
we use those representations to calculate similarity and generate a ranked list of recommendations.

Stage 1: Training (Creating a ”Map” of Features with Skip-gram)

The first stage is dedicated to building the core components: the feature embeddings. The goal is not to
create recommendations directly, but to learn a meaningful ”map” where features with similar meanings
are located close to each other. The Skip-gram model is an excellent tool for this map-making process.

The objective is to learn a dense vector for each unique feature. The Skip-gram with Negative
Sampling architecture trains the model to predict context features that co-occur with a center feature,
while distinguishing ”wrong” combinations. For example, in a movie database, if ”sci-fi” is the center
feature for Blade Runner, context features might include ”cyberpunk” or ”dystopian”, while ”romance”
(a negative sample) should score low.

In the Skip-gram with Negative Sampling model, used for learning feature embeddings, two key terms
come up: center feature and context feature. These are crucial for understanding how the model
learns relationships between features (like tags, words, or attributes) based on their co-occurrence in
items (like movies, books, or products).

• Center Feature (fc): This is the feature the model focuses on at a given moment during training.
For example, in a movie database, the center feature might be the tag ”sci-fi” from a movie’s
description. The model systematically iterates through all features in the dataset, selecting one
at a time as the center feature to ensure comprehensive learning. The model is trying to figure
out which other features (like ”cyberpunk” or ”action”) tend to appear alongside ”sci-fi” in the
same movie. Understanding means the model learns to predict these related features by adjusting
numerical vectors (embeddings) so that features appearing together have similar vectors. For
example, if ”sci-fi” and ”cyberpunk” often show up in the same movies, their vectors become
closer in a mathematical ”space,” capturing their relationship.

• Context Feature (fo): These are the other features that appear alongside the center feature in
the same item. For instance, if ”sci-fi” is the center feature for a movie like Blade Runner, context
features might include ”cyberpunk,” ”dystopian,” or ”futuristic” because they’re also tags for that
movie. The model learns to predict these context features based on the center feature, figuring
out which ones naturally go together.

The model’s objective is to learn to predict ”context features” fo that co-occur with a ”center feature” fc.
It’s trained to give high similarity scores to true co-occurring pairs (e.g., (’sci-fi’, ’cyberpunk’))
and low scores to random ”negative” pairs (e.g., (’sci-fi’, ’romance’)).

The objective function for a true pair (fc, fo) is:
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J = log σ(v′
fo
· vfc) +

k∑
i=1

Efi∼Pn(f)[log σ(−v′
fi
· vfc)]

Let’s break it down:

• J is the overall objective function for this training example—we aim to maximize it. In practice,
optimization algorithms minimize the negative of this expression, L = −J .

• The first term, log σ(v′
fo
· vfc), focuses on the true pair, pushing the model to give them a high

similarity score.

• The second term, ∑k
i=1 Efi∼Pn(f)[log σ(−v′

fi
· vfc)], handles the ”negative” examples. It pushes

the model to give low similarity scores to k randomly sampled features that do not belong with
the center feature.

• vf and v′
f are two vector representations for a feature f .

• σ(·) is the sigmoid function, σ(x) = 1/(1 + e−x).

Key Hyperparameters — The embedding dimension (e.g., 50–300), the number of negative samples k
(e.g., 5–20), and the noise distribution Pn(f) significantly affect performance. For item features, the
definition of context is also crucial; in our case, we consider all co-occurring features within the same
item to be part of the context. The noise distribution Pn(f) is often set as the unigram distribution
raised to the 0.75 power, as proposed in the original Word2Vec paper.

At the end of this training stage, the job of Skip-gram is done. The final output is not a list of
recommendations, but a high-quality ”dictionary” where each feature in our catalog is mapped to a
dense vector embedding.

After training, the vectors vf become the feature embeddings.

Note on Applicability — While this approach is designed for content-based recommendation using
item features (e.g., tags or attributes), it can be adapted for collaborative filtering by treating items
themselves as ”features” and user interaction lists (e.g., rated movies) as ”contexts,” as shown in the
accompanying tutorial code. This creates item embeddings akin to item2vec, blending content-based
and collaborative approaches.
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References:

• Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed Representations
of Words and Phrases and their Compositionality. Advances in Neural Information Processing
Systems (NIPS). https://arxiv.org/abs/1310.4546

Caveat — Skip-gram with Negative Sampling is efficient but sensitive to noisy data. An alternative,
hierarchical softmax, may be considered for smaller datasets or when computational resources are
limited, as it avoids sampling negatives but requires a tree structure.

Stage 2: Usage (Generating a Ranked Recommendation List)

Once the ”map” of feature embeddings is created, we can use it to plot a route—that is, to generate
an ordered list of recommendations for a user. This is a separate, multi-step process that uses the
embeddings learned in Stage 1.

Create Item Vectors from Feature Embeddings

Since an item’s features are typically an unordered set (e.g., the tags ”sci-fi” and ”action” are equivalent
to ”action” and ”sci-fi”), the most direct approach is to aggregate their feature embeddings. The
simplest and most common aggregation method is averaging. The item’s vector x⃗i is computed as
the element-wise average of the vectors of all its features. This creates a vector representing the item’s
semantic center of gravity.

x⃗i = 1
N

N∑
k=1

vfk

This approach is computationally efficient and correctly treats the features as a ”bag of features,”
ignoring any arbitrary order.

Calculating Similarity

Once all items are represented as dense vectors, we can determine the order of recommendations by
measuring proximity. We take a target item vector (e.g., the last item a user liked) and compute the
Cosine Similarity between its vector and the vectors of all other items in the catalog.

similarity(x⃗i, x⃗j) = x⃗i · x⃗j

|x⃗i||x⃗j |

Ranking and Recommending

The final recommendation list is generated by sorting all items in descending order based on their cosine
similarity scores. The items with the highest scores are the top recommendations, presented to the user.
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This can be done for a target item or for a user’s profile vector, which can be created by averaging the
vectors of all items they have positively interacted with.

Feature embeddings (Step 1) capture the semantics of individual attributes, enabling fine-grained
similarity between tags. Item embeddings (Step 2) build on this by representing entire items, either by
aggregating feature embeddings or learning a holistic vector. This shift from feature-level to item-level
representations allows recommendations based on overall item similarity (e.g., recommending Alien for
liking Blade Runner), offering a more context-aware approach suitable for content-based systems.

Reference:

• Le, Q., & Mikolov, T. (2014). Distributed Representations of Sentences and Documents. Interna-
tional Conference on Machine Learning (ICML). https://arxiv.org/abs/1405.4053

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Tutorial #1: Content-Based Similarity with Feature Embeddings

The tutorial sections in this guide are entirely optional, though they can be extremely
valuable for building intuition and a deeper understanding of the algorithms in practice.
They assume, however, a basic familiarity with the libraries and frameworks being used. If
you are interested in exploring why a particular method, function, or framework class is
invoked at a specific point in the code, we encourage you to consult the Appendix, where we
provide detailed, line-by-line commentary for selected algorithms from the Tutorial sections.

This tutorial implements the content-based embedding model as described in the theoretical section.
Instead of using user interaction data, we will learn embeddings for item features (movie genres) to
find items with similar content.

The core idea is:

(1) Treat each movie’s list of genres as a ”sentence.”

(2) Use a Skip-gram model to learn dense vector embeddings for each genre.

(3) Represent each movie by averaging the embeddings of its genres.

(4) Recommend movies by finding those with the highest Cosine Similarity.

For the line-by-line explanations of the code samples, please see the Appendix.
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Step 1: Prepare Data from Movie Genres

First, we load the u.item file from the MovieLens 100k dataset. This file contains movie titles and their
associated genres, which will serve as our content features.

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import pandas as pd
from torch.utils.data import Dataset, DataLoader
from collections import defaultdict

# Data Loading and Preparation

movie_df = pd.read_csv(
'ml-100k/u.item', sep='|', encoding='latin-1', header=None,
names=['movie_id', 'title'] + list(range(22))

)

# Extract genres for each movie
genre_cols = movie_df.columns[-19:]
movie_genres = {}
for index, row in movie_df.iterrows():

genres = [
genre_cols[i] for i, val in enumerate(row[genre_cols]) if val

]
if genres: # Only include movies with at least one genre

movie_genres[row['movie_id']] = genres

# Vocabulary and Pair Generation

all_genres = sorted(list(set(
g for genres in movie_genres.values() for g in genres

)))
genre_to_idx = {genre: i for i, genre in enumerate(all_genres)}
vocab_size = len(all_genres)
print(f"Found {len(movie_genres)} movies and {vocab_size} genres.")

# Generate positive pairs from co-occurring genres in the same movie
positive_pairs = []
for genres in movie_genres.values():

if len(genres) >= 2:
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indices = [genre_to_idx[g] for g in genres]
for i in range(len(indices)):

for j in range(len(indices)):
if i != j:

positive_pairs.append((indices[i], indices[j]))
print(f"Generated {len(positive_pairs)} positive genre pairs.")

# Create negative sampling distribution from genre frequency
genre_freq = defaultdict(int)
for genres in movie_genres.values():

for g in genres: genre_freq[g] += 1

freq_list = [genre_freq[g] for g in all_genres]
prob = np.array(freq_list) ** 0.75
prob /= prob.sum()
prob_tensor = torch.from_numpy(prob).float()

# Setup DataLoader for training
class GenrePairsDataset(Dataset):

def __len__(self): return len(positive_pairs)
def __getitem__(self, idx): return torch.tensor(positive_pairs[idx])

dataloader = DataLoader(GenrePairsDataset(), batch_size=1024, shuffle=True)

Step 2: Define the SkipGramNS Model

The model architecture uses PyTorch’s nn.Embedding layers to store the genre vectors. Its forward
method implements the Skip-gram with Negative Sampling loss function, which trains the model to
give high scores to co-occurring genres and low scores to random pairs.

class SkipGramNS(nn.Module):
def __init__(self, vocab_size, embed_dim):

super().__init__()
self.in_embed = nn.Embedding(vocab_size, embed_dim)
self.out_embed = nn.Embedding(vocab_size, embed_dim)
self.in_embed.weight.data.uniform_(-1, 1) # Init weights
self.out_embed.weight.data.uniform_(-1, 1)

def forward(self, centers, contexts, negatives):
v_c = self.in_embed(centers)
v_o = self.out_embed(contexts)
pos_dot = (v_c * v_o).sum(1)
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pos_loss = torch.log(torch.sigmoid(pos_dot))

v_neg = self.out_embed(negatives)
v_c_unsq = v_c.unsqueeze(2)
neg_dot = torch.bmm(v_neg, v_c_unsq).squeeze(2)
neg_loss = torch.log(torch.sigmoid(-neg_dot)).sum(1)

loss = - (pos_loss + neg_loss).mean()
return loss

Step 3: Train the Model to Learn Genre Embeddings

The training loop feeds batches of positive genre pairs to the model. For each pair, it also draws k
negative samples. The optimizer then adjusts the embedding weights to minimize the loss, gradually
teaching the model the relationships between genres.

To understand why we use Adam: Recall the mathematical objective from the Skip-gram with Negative
Sampling (NS). The objective function for each training example is:

J = log σ(v′
fo
· vfc) +

k∑
i=1

Efi∼Pn(f)[log σ(−v′
fi
· vfc)]

In practice, we minimize the loss L = −J using gradient descent. Adam is an adaptive variant
of Stochastic Gradient Descent (SGD) that adjusts the learning rate for each parameter based on
the history of gradients, making it more efficient and stable for training embedding models like this
one. It helps converge faster than plain SGD, especially with noisy data from negative sampling, by
incorporating momentum and adaptive scaling (as described in the Adam paper by Kingma & Ba,
2014).

For negative sampling, we use torch.multinomial to draw k negative samples per positive pair from the
precomputed probability distribution (prob tensor). This distribution is the unigram frequency raised
to the 0.75 power Pn(f) ∝ freq(f)0.75, as recommended in the original Word2Vec paper (Mikolov et al.,
2013). torch.multinomial efficiently samples from this categorical distribution without replacement,
simulating the expectation Efi∼Pn(f) in the objective function. For very large vocabularies (e.g., thou-
sands of unique items), this can be computationally expensive due to repeated sampling; optimizations
like subsampling frequent items (to reduce noise from common words/movies) or hierarchical softmax
(as an alternative to NS) may improve efficiency in such cases.

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = SkipGramNS(vocab_size, embed_dim=30).to(device)
optimizer = optim.Adam(model.parameters(), lr=0.01)
k, epochs = 5, 20
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print("\nStarting training for genre embeddings...")
for epoch in range(epochs):

total_loss = 0
for batch in dataloader:

centers, contexts = batch[:, 0].to(device), batch[:, 1].to(device)
# Draw k negative samples for each positive pair
negs = torch.multinomial(prob_tensor, len(centers) * k, True)
negs = negs.view(len(centers), k).to(device)

loss = model(centers, contexts, negs)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()

print(f"Epoch {epoch+1}: Loss = {total_loss/len(dataloader):.4f}")

# Extract the learned genre embeddings for use in recommendation
genre_embeddings = model.in_embed.weight.data.cpu().numpy()

Step 4: Generate Content-Based Recommendations

With the genre embeddings learned, we can now build our recommender. We represent each movie by
averaging the embedding vectors of its genres. Recommendations are then generated by calculating the
cosine similarity between these aggregated movie vectors.

# Create a vector for each movie by averaging its genre embeddings
movie_vectors = {}
for movie_id, genres in movie_genres.items():

if genres:
genre_indices = [genre_to_idx[g] for g in genres]
movie_vectors[movie_id] = genre_embeddings[genre_indices].mean(0)

# Convert to a matrix and list for efficient similarity calculation
movie_ids_list = list(movie_vectors.keys())
movie_matrix = np.array([movie_vectors[mid] for mid in movie_ids_list])

def get_similar_movies(target_title, top_n=5):
target_row = movie_df[movie_df['title'] == target_title]
if target_row.empty:

print(f"Movie '{target_title}' not found.")
return
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target_id = target_row['movie_id'].iloc[0]
target_idx = movie_ids_list.index(target_id)
target_vec = movie_matrix[target_idx]

# Calculate cosine similarity between the target and all others
sims = (movie_matrix @ target_vec) / (

np.linalg.norm(movie_matrix, axis=1) * np.linalg.norm(target_vec)
)

# Get top N indices, excluding the first one (the item itself)
sim_indices = np.argsort(sims)[::-1][1:top_n+1]

print(f"\nMovies similar to '{target_title}':")
for idx in sim_indices:

sim_id = movie_ids_list[idx]
sim_title = movie_df[movie_df['movie_id']==sim_id]['title'].iloc[0]
score = sims[idx]
print(f"- {sim_title}: Sim = {score:.4f}")

get_similar_movies('Toy Story (1995)', top_n=5)
get_similar_movies('Star Wars (1977)', top_n=5)

Output:

Step 1: Preparing Data

Found 1682 movies with genres and 19 unique genres.
Generated 3350 positive genre pairs.
Step 2: Training Model

Using device: cpu
Epoch 5/20: Avg Loss = 3.3323
Epoch 10/20: Avg Loss = 2.5826
Epoch 15/20: Avg Loss = 2.4474
Epoch 20/20: Avg Loss = 2.3943
Step 3: Generating Recommendations

Movies similar to 'Toy Story (1995)' (Genres: [6, 7, 8]):
- Aladdin and the King of Thieves (1996) (Genres: [6, 7, 8]): Sim = 1.0000
- Goofy Movie, A (1995) (Genres: [6, 7, 8, 17]): Sim = 0.9559
- Aladdin (1992) (Genres: [6, 7, 8, 15]): Sim = 0.9441
- Little Rascals, The (1994) (Genres: [7, 8]): Sim = 0.8897
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- Mouse Hunt (1997) (Genres: [7, 8]): Sim = 0.8897

Movies similar to 'Star Wars (1977)' (Genres: [4, 5, 17, 18, 20]):
- Return of the Jedi (1983) (Genres: [4, 5, 17, 18, 20]): Sim = 1.0000
- Starship Troopers (1997) (Genres: [4, 5, 18, 20]): Sim = 0.9505
- Empire Strikes Back, The (1980) (Genres: [4, 5, 11, 17, 18, 20]): Sim = 0.9484
- African Queen, The (1951) (Genres: [4, 5, 17, 20]): Sim = 0.9408
- Last of the Mohicans, The (1992) (Genres: [4, 17, 20]): Sim = 0.9117

Movies similar to 'Scream (1996)' (Genres: [14, 19]):
- Village of the Damned (1995) (Genres: [14, 19]): Sim = 1.0000
- Scream (1996) (Genres: [14, 19]): Sim = 1.0000
- Believers, The (1987) (Genres: [14, 19]): Sim = 1.0000
- Nightwatch (1997) (Genres: [14, 19]): Sim = 1.0000
- Loch Ness (1995) (Genres: [14, 19]): Sim = 1.0000

Note on Similarity Scores of 1.0:

As seen in the recommendations for ’Scream (1996)’, several movies have a perfect similarity score
of 1.0. This is not an error but a direct consequence of our methodology. Since we represent each
movie solely by averaging its genre embeddings, any two movies that share the exact same set of
genres will have identical vector representations. The cosine similarity between identical vectors is
always 1.0. This highlights a limitation of using a small, discrete set of features; to achieve more
nuanced recommendations, one could incorporate additional content features like keywords, tags, or
director/actor information.

1.1.4 Limitations of Content-Based Filtering

• Limited Serendipity. Since it recommends items similar to what a user already likes, it
can struggle to introduce novel and diverse content. This can lead to an over-specialization of
recommendations.

• Requires Rich Metadata. The performance of content-based methods is entirely dependent
on the quality and richness of the item features. Items with sparse or no metadata cannot be
accurately represented and are difficult to recommend.

• Inability to Leverage Collaborative Information. These methods are ”deaf” to the wisdom
of the crowd. They cannot capture preferences that emerge from user-item interaction patterns,
such as learning that users who like item A also tend to like item C, even if A and C have no
features in common.
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Production Ready?

• Content-Based Filtering: Absolutely Production-Ready. These techniques are robust,
scalable, and widely deployed. TF-IDF is a cornerstone of information retrieval and serves as a
powerful baseline in many production systems. Semantic models using Word2Vec/Doc2Vec are
also common for enriching item representations.

TF-IDF, Cosine Similarity:

• scikit-learn : The definitive library for these tasks. It provides highly optimized and easy-to-use
implementations of TfidfVectorizer and cosine similarity.

Word2Vec, Doc2Vec:

• Gensim : The standard, go-to library for training and using Word2Vec and Doc2Vec models.

• spaCy : A powerful NLP library that provides pre-trained word embeddings and easy access to
document vectors.

1.1.5 Alternative Word2Vec Architecture: CBOW

As an alternative to the Skip-gram model, the Continuous Bag-of-Words (CBOW) architecture
offers a different but related approach to learning feature embeddings. While Skip-gram predicts context
features from a central feature, CBOW does the reverse: it predicts the central feature based on the
sum or average of its surrounding context feature embeddings.

Cranberry

is

and

sour

Projection RED

Continuous Bag of Words (CBoW)...
Cranberry

is

and
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ProjectionRED

Skip-gram

aims to predict the...predicts the central word using...

For features, the surrounding...

Key concept — CBOW is more computationally efficient and tends to perform better for frequent
features. For a given set of context features (e.g., [’cyberpunk’, ’dystopian’] for a movie), the
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